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Principle of Least Action 

The state of a physical system with n degrees of freedom is described by the generalized 

coordinate qi(t) at each instant t. At any given moment t, the system's state can be 

represented by a point in an n-dimensional Cartesian space, called the "configura t ion 

space." Each axis corresponds to a generalized coordinate qi . As a mechanical system 

evolves between two instants t1and t2, it traces a curve in the configuration space 

between two points qi(t1) and qi(t2) which we (for lack of a better term) call a 

"trajectory". Time is considered as a parameter of the curve. The real trajectory 

corresponds to the actual dynamics followed by the system, while the "varied 

trajectory" or "fictitious trajectory," which is infinitely close, corresponds at each 

instant to the positions qi+δqi , where δq  is an infinitesimal increment of the position. 

These two trajectories must satisfy the same initial and final conditions: 

The fact that qi represents the actual trajectory of the system is obtained by solving the 

Lagrange equation. This equation is derived by minimizing the functional S defined 

by
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The physical trajectory is the path that gives a minimal value to the action S (it is 

generally a minimum; hence the principle of least action, but in some cases, the 
extremum is a maximum). The motion of a system from instant t1to t2 is such that the 
action S is stationary (minimal), where 

δS=0 

The variation of δS is written as: 
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Knowing that and after a first-order expansion of 
δqi, we have: 

 

The last term 
𝜕𝐿

𝜕𝑡
𝛿𝑡 does not contribute since the variation is taken at constant time 

δt=0, so: 

. 

Since δ𝑞𝑖̇ ˙=d(𝛿𝑞𝑖)/dt, the second integral can be rewritten as: 

 

By performing an integration by parts on this integral, we obtain: 

 

The first term in brackets is zero since δqi(t1)=δqi(t2)=0. Therefore, for all expressions 
of ∂L/∂�̇�i , we obtain: 

 

The qi  are generalized coordinates and thus independent. The sum can only vanish for 
arbitrary and independent δqi  if the n differential equations: 
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are simultaneously satisfied. 

2.2 Conjugate Momentum 

The conjugate momentum associated with the generalized coordinate qiq_iqi is 

defined by: 

pi= 
∂L

𝜕𝑞𝑖̇̇
 

pi sometimes called generalized momentum. 

Example: 

For a material point of mass m immersed in a potential U, we have: 

 

Example: 

For a material point of mass m rotating around a force center c at a distance r, we 
have: 

 

Pθ is the component of the angular momentum perpendicular to the plane of rotation. 

Example: 

For a generalized potential: 

2.3 Conservation Laws 

In the context of solving motion equations, conservation laws play a fundamental role 

in physics: 

 They reflect certain fundamental physical properties. 
 They provide important information about the system's motion. 

A. Cyclic Variable: 
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If the Lagrangian L is independent of the generalized coordinate q, then: 

𝜕𝐿

𝜕𝑞
=0 

In this case, q is called a cyclic or hidden coordinate, and we have: 

 

The conjugate momentum p associated with the generalized coordinate q is a constant 
of motion (time-independent) or first integral. 

B. Time Homogeneity: 

If the Lagrangian L(qi;𝑞𝑖˙̇ ) does not explicitly depend on time t (i.e., ∂L/∂t=0), then the 
quantity: 

 

is a first integral, where: 

dϵ

dt
 =0 

By hypothesis, we have 
∂L

∂t
 =0 but 

dL

dt
 ≠0, so we have: 
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Nous supposons que le potentiel U(qi) ne dépend pas de la vitesse généralisée 𝑞𝑖̇ et que 

les liaisons sont holonomes scléronomes (c'est-à-dire indépendantes du temps t). 
L’expression de l’énergie cinétique T est alors de la forme quadratique par rapport aux 

vitesses généralisées qi. 

 

where mi is the mass of particle ii, and 𝑟�̇�  ̇⃗⃗⃗⃗  ˙i is the velocity of that particle. 

Since: 

 

 .. 

Then 

 

Expanding this, we obtain: 

 

This can be rewritten as: 

 

Hence: 

 

with: 
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Thus: 

 

 

Knowing that: 

  

then 

 

or 

 

Finally, we obtain: 

  

Thus, the expression for ϵ\epsilonϵ is: 

 

This shows that the total energy ϵ is the sum of the kinetic energy T and the potential 

energy U. 

Non-uniqueness of the Lagrangian 
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Consider a physical system described by a Lagrangian L(qi,�̇�,t), which satisfies the 

Lagrange equation 2.21. The following Lagrangians: 

�̃�=λL 

�̃� = 𝐿 +
𝑑𝑓

𝑑𝑡
 

describe the same evolution equation, where f(qi,t) is a real and differentiable scalar 

function. 

For the first Lagrangian, this follows directly from the linear form of L in the Lagrange 
equation. 

For the second Lagrangian, we have: 

 

 

On the other hand, we have: 

 

Thus: 

 

since: 

 

Then: 

 

2.5 Principle of Least Action and Holonomic Constraints 
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Suppose that the physical system is subjected to ℓ constraints or holonomic constraints : 

fj(r 1,…,r N)=0        ∀1≤j≤ℓ 

or, in terms of the 3N coordinates qi, for i=1,…,3N 

fj(q1,…,q3N)=0                  ∀1≤j≤ℓ 

For a virtual displacement, we have: 

 

Thus: 

 

Moreover, according to the calculus of variations, if we add a virtual displacement δq i 

such that δqi(t1)=δqi(t2)=0 to a real trajectory qi, the variation of the action is: 

 

Given equations (2.24) and (2.25), we have: 

 

The 3N unknowns qi  are given by the Lagrange equations: 

  

Applications 

A. Two-Body Problem: Two particles of masses m1 and m2 are represented by 

position vectors 𝑟1⃗⃗  ⃗ and 𝑟2⃗⃗  ⃗. Assuming the system formed by m1 and m2 is closed, the 

total external force on the system is zero. Additionally, the particles interact via the 
potential energy U(𝑟1⃗⃗  ⃗, 𝑟2⃗⃗  ⃗.)=U(𝑟1⃗⃗  ⃗, 𝑟2⃗⃗  ⃗). 
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Let �⃗�  be the position vector of the center of mass (CM): 

�⃗� =
𝑚1𝑟 1+𝑚2𝑟 2

𝑚1+𝑚2
 

Let the new vector 𝑟  be defined as: 

𝑟 =𝑟 1−𝑟 2  

The kinetic energy of the system is: 

T=
1

2
𝑚�̇�2  

After substitution and simplification: 

T=
1

2
(m1+m2)�̇�2+

1

2

𝑚1𝑚2

𝑚1++𝑚2
�̇�2  

Finally, the kinetic energy can be written as: 

T=
1

2
M�̇�2+

1

2
μ�̇�2  

where M=m1+m2  is the total mass of the system, and μ=
𝑚1𝑚2

𝑚1++𝑚2
is the reduced mass. 

In the case where m1≪m2 , such as in the Earth-Sun system, M=m2 and μ=
𝑚1𝑚2

𝑚1++𝑚2
. 

The Lagrangian of the system is: 

L=T−U(𝑟 1−𝑟 2)=
1

2
M�⃗� ̇ 2+

1

2
μ𝑟 ̇2−U(𝑟 ) 

This Lagrangian can be written as: 

L=LCM+Lμ 

where: 
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LCM=
1

2
M�⃗� ̇ 2 

�⃗�  is a Hidden or Cyclic Variable: 

Since          
𝜕𝐿

𝜕�⃗� 
=

𝜕𝐿𝐶𝑀

𝜕�⃗� ̇
 =0⃗ , 

then: 

𝑑

𝑑𝑡
(
𝜕𝐿𝐶𝑀

𝜕�⃗� ̇
) =0⃗ ⇒

𝜕𝐿𝐶𝑀

𝜕�⃗� ̇
= 𝑀�⃗� ̇ 

𝑀�⃗� ̇ = 𝑐𝑡𝑒⃗⃗⃗⃗⃗⃗    the center of mass (CM) moves at a constant velocity. 

The second part of the Lagrangian is: 

Lμ=
1

2
μ 𝑟 ̇2−U(𝑟 ) 

This appears as the Lagrangian of a particle with mass μ\muμ and position vector 𝑟 . 
The Lagrangian L is the Lagrangian of the relative motion between two particles, 
reducing it to a problem of a single fictitious particle with reduced mass μ\muμ and 

position vector 𝑟 . 

The two-body problem can be reduced to a one-body problem. However, the N-body 
problem (N > 2) has no analytical solution. 

Central Potential: 

We are interested in cases where the interaction depends only on the distance between 
two bodies (gravitational interaction, electrostatic interaction) or between the body and 
the origin of the force (central force) (mass-spring, sun-earth). In this case, U(𝑟 )=U(r). 

Since the force here is purely radial, 𝐹 = f(r)𝑒𝑟⃗⃗⃗  then: 

�⃗⃗� 𝐹/⃗⃗⃗  ⃗𝑂  =𝑂𝑀 ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ∧  �⃗⃗⃗� =𝑟 𝑒𝑟⃗⃗⃗  ∧ f(r) 𝑒𝑟⃗⃗⃗  =r f(r) 𝑒𝑟⃗⃗⃗  ∧ 𝑒𝑟⃗⃗⃗  =0⃗  

The moment of the force applied to the mass mmm is zero. The angular momentum 
is: 

Since 𝑒𝑟  ⃗⃗ ⃗⃗  ∧ 𝑒𝜃⃗⃗⃗⃗  = 𝑒𝑧  ⃗⃗ ⃗⃗  , the angular momentum with respect to O is: 

 

According to the angular momentum theorem: 
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�⃗� M/O  is constant in magnitude and direction, so the trajectory of the material point 

lies in the XOY plane (the plane is a constraint, reducing one degree of freedom). We 
can also write: 

𝑑˙

𝑑𝑡
(𝑚𝑟2�̇�)=0 

The particle of mass mmm has two degrees of freedom, so two generalized 
coordinates rrr and θ\thetaθ. The Lagrangian is: 

L=
1

2
m(r˙2+r2θ˙2)−U(r) 

Immediately, we notice that θ is a cyclic or "hidden" coordinate, and therefore: 

 

This is the law of conservation of angular momentum. With respect to the generalized 

coordinate r, we have: 

 

 

 

 

The particle of mass mmm is subjected to two forces: 

Central force 

 
Centrifugal force: 
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is a repulsive force, meaning that a body moving along a curvilinear 
trajectory with respect to O is effectively pushed outward. 

From the conservation of angular momentum, we have: 

 

This simplifies to: 

 

where we have defined Ueff as: 

 

The term 
𝜎0

2

2𝑚𝑟2  represents a potential barrier. The problem is thus reduced to studying 

the motion of a particle of mass m with one degree of freedom in the generalized 
coordinate r, subjected to an effective force: 

 

and governed by the fundamental principle of dynamics: 

m�̈�=Feff 

B - Potential in 
𝟏

𝒓
: 
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In the case of gravitational or electrostatic interaction, the Newtonian potential is 

written as: 

U(r)=−
𝐾

𝑟
 

 

with K=Gm1m2  the gravitational case and K=
∣𝑞1𝑞2∣

4πϵ0
 in the electrostatic case. Thus, the 

effective potential is written as: 

 

The effective potential has a minimum U0 at: 

 

We obtain: 

 

Thus, for r=r0 , we have m�̈�=0 and the effective force acting on the particle is zero. This 

corresponds to a circular trajectory (where only θ\thetaθ varies). According to the 
conservation of angular momentum, the angular velocity is: 
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The equation of motion for θ(t) is: 

 

For each time interval, the period τ\tauτ, during which θ\thetaθ increases by 2π (to 
complete one orbit), is given by: 

 


