Lagrange Formalism

-Introduction

In Newtonian mechanics, the motion of a system with N material points is obtained by
solving N second-order vector differential equations or 6N scalar differential equations
(3 for acceleration and 3 for velocity), projecting onto the 3 Cartesian coordinate axes
and involving 6N integration constants.

However, there are circumstances where the application of Newtonian mechanics is
delicate, particularly when the system has internal constraints due to binding forces that
limit the movement of the system, thus reducing its degrees of freedom.

Newton's laws form what can be called vector mechanics, as most of the quantities
involved in this description are of avector nature (force, acceleration, velocity, position
vector). In contrast to vector mechanics, analytical mechanics uses scalar functions
(kinetic and potential energies).

I1-Principle of Virtual Work

If Fdenotes the sum of all forces acting on the material point i of a system with N
material points, the sum of the work done by the forces applied to the system in
equilibrium is:

W =30 [ F-6i% =0 (2.1)

where 371- is a virtual displacement of the system.

Some forces among the F[have identically zero virtual work, and others have mutually
zero virtual work. These forces are called binding forces, and the remaining forces are
applied forces:

.ﬁ.‘ o _'F’-I;[.r;'] , F’.I:."]
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By definition, for any infinitesimally small virtual displacement compatible with the
constraints of the problem, we can write that the virtual work of the binding forces (this
is what is called d'Alembert's principle (1743)) is:

S EY 7 =0

Py |

In the case of equilibrium, we have:

—

SN EY s =0 (2.2)
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Example 1
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Consider a lever in equilibrium under the action of two forces F, and F,. Determine
the condition of equilibrium. The position vectors are written as:

" "
TL — @1€,

Ty = —asé,
Giving the lever a virtual rotation 66, we get:

6e,=80%€g

5?1 = (115_(;,- ‘53’_"1 — ﬂléﬁgﬂ
STo=—abde, & — —a-s00ey

Since the reaction force R™ does not do work, the principle of virtual work can be
written as:

F, .67 + Fy. 6% — 0
Given that;

F, — F&

o — Fjé:_r]

It follows that:
{Flﬂ.l F_}{l_}}éﬁ' = Flﬂ.l Fj_}(!-j; =20

Calculation of the reaction force R:
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P

If the virtual displacement is incompatible with the binding force, we give the lever a
virtual vertical translation 8r'=8ze,. The principle of virtual work then becomes:

R.67+F .67 + By .67 = 0
Therefore:
{R—Fl —ng&:_“_.?*R_FL—-FQ

Example 2: Double Inclined Plane

Let two masses m and me placed on a double inclined plane and a lever in equilibrium
under the action of two forces F~, et and F~,. Determine the condition of equilibrium

The forces acting on the system include gravitational forces p; and p,, tension forces
T, and T,,and reaction forces R, and R,.

The principle of virtual work can be written as:
(B + Ty + Ry) - 671 + (o + T + Ry) - 67 = 0

Since R”;-6r",=0" and R”,-3r",=0" (as R”; and R ,are perpendicular to the virtual
displacements), the virtual work of R™;and R”,is identically zero.

The virtual work of T; and T, is mutually zero:

T__;-ﬂr'g — Tior = 0
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Since 8r,=dr; = &r, we have (T,—T,).0r=0, implying T;=T,.

The virtual work of the weights is:

111 gOT COs [5 I.’.k'_} b 1Mo gdr cos (:} - f.tg] =10

Therefore:
g(mysinay — mosinas )or — 0

The equilibrium position is:
I SIIL cy] — 7129 811 (xg

Constraints

A constraint is associated with a binding force that restricts or limits the possible
movements of the system. The equations of constraints can be expressed either by:

« Binding forces.
o Equations of constraints containing the coordinates, their derivatives, and
time.

In the simplest case, these constraints can be expressed by a number | of independent
equations among the n<N positions 7; and time t:

These constraints are called holonomic (from Greek: "whole law"). In these constraint
relations, the velocity r~ does not appear.

e If time is implicit in the equation, it is called holonomic scleronomic or holonomic
stationary.

o If time is explicit in the equation, it is called holonomic rheonomic or holonomic
non-stationary.

If these constraint relations do not involve the velocity \( \dot{\vec{r}} i \): - If time
Degreesof Freedom

A free particle in a 3-dimensional configuration space has 3 independent coordinates to
determine its motion. For a system of N free material points, 3N independent
coordinates are needed to fully determine its motion. If the system is subject to



Lagrange Formalism

constraints that limit its motion, the number of necessary coordinates to describe its
motion reduces. In the simplest case, these constraints can be expressed by a number |
of independent equations among the N positions 7;and time t: The minimum number
of coordinates necessary to specify the position of a system, or multiple material points,
is called the number of degrees of freedom (DOF): ngpory = 3N — |

Generalized Coordinates

Generalized coordinates are the necessary and independent coordinates that allow
tracking the evolution of a system over time. They can take the form of a coordinate or
an angle. For nd degrees of freedom, we have nd generalized coordinates. It is assumed
that the position vector #;,0f material point iii is an arbitrary function of the generalized
coordinates {g;j,j=1,...,nd} of the form:

?_"’,-'{LE..'._ Yis 3!] - r-:{w-"{qj}'. y'{qur] z.'{q_j};l

From this equation, the differential form of Pfaff or Pfaffian is:

dx; dx;
dr; — Z _f_quJ; f W{H

3q; ot
!
. 8z; z
lz: — —d —dt
{ Z ag; P ot

Generalization of the Principle of Virtual Work

To simplify, we consider holonomic constraints with n degrees of freedom. For any
point in the system, we have:

'F.l'_"r!f{ql:--'--.[hi{i":-i}:- I-_]-'l-'--.*mr

A compatible displacement from {qa,...,qna,t}is any virtual displacement that could be
imposed on the system, taking into account the constraints existing at time t:

riel

ary
57 =y —dq;
Jj=1 04

D'Alembert's Equation
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Consider a system of material points of mass mi, subjected to binding forces Fand
applied forces F;*According to the fundamental principle of dynamics, we have:

=)

.'r_:_
m;y; — F" 4+ F

According to the virtual work condition:

N
Z FI;'-I-' ST —
1—1

We obtain D'Alembert's equation (the sum of the virtual work of the applied forces
and the inertia forces is zero for any compatible virtual displacement):

N

) (miF: F'"Y . 67 =0

1

Generalized Force

From D'Alembert's equation and equation (2.3), we have:

N _ riet 97,
(m~; — F*) . — “8g; = 0
Z : : Z dq; J
Introducing the generalized force Qj:
Z _FII | . df_’
dq j
Lagrange's Equations of the First Kind
For a system with N material points subjected to holonomic rheonomic constraints
ok("1,r2,..,rNY) ( k=1,...,0), defining thus nd=3N—{ generalized coordinates
{01,02,...,qnd} , We can invert the ndrelations gj=gj(r"1,r’2,....r’nt) (j=1,...,ndj ) to
express the N relations:

ri=r i(g1,92,...,qnd,t)

The infinitesimal displacement is:
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™ o, oF;
dit; = Y ~—dq; + —-dt
The generalized velocity is defined as:
dg;
Ty

Thus:

i
L s dr - drt ‘ 6‘1':
ao— _ E _

E f)r:_; ]

The left-hand side of D'Alembert's equation (2.5):

Then:

On the other hand:

We have:

L : nd nd .
or; Q[ df 0 oF; . OF or; 94;
n: = o = o E ~—q; + = E —
dgr.  Oqgr \ dt g, e dq; ot pr dq; Dy,

We have:

@_51_{1 ifj — k
dg. " |0 ifj Ak
a nr7 is the Kronecker delta. Thus, we have:
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g -"'|I = =
Jr; L IF dr;
Yy E a0k = o

Ay, ¢ Jg; gy,
Thus:
v | \
d ar - . ar
A j= — | ;T - Z m;T, -
1 d dq; — dq;
Then:

A . rN .
{I 't:j _ l l_.j '{Ij - ]_ l_.z
4= (‘a¢,,- (Z ‘4’)) 94, (Z ‘)

The kinetic energy of the system is defined as:

N
T=>.
i1

x 2
._'._
i

;T

o | =

Finally, for Aj, we have:

L — d ('i'T) oT
ot (5‘},1 dg;

Equation (2.5) becomes:

Lagrange's Equations of the First Kind
;—i(%) %—Qi forj —=1,...,nd

This is a system with nd equations called Lagrange equations.

Example: Simple Pendulum

It is a system composed of an object which is a material point of mass mmm. Thus, the

number of coordinates is Nc=3. The constraints are the plane xoy with equation z=0
and since the string is inextensible, the coordinates of the mass mmm satisfy the relation

r=y/x2 + y2=(, and the mass moves along an arc of a circle. The number of constraint
equations is =2, so the number of degrees of freedom is nd=1. The generalized
coordinate is 0. The kinetic energy T is
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i 243
T — tmi?8°

The generalized force is Q)

Qp =P :j_rl;r
p — mgj
r — £sinfi+ £cosbj

ir

55 — fcosbi— £sinb]

dr

p- 5 — —mgtsind
Applying equation (2.7), we have

d [ ar dar
dt (ﬁ) o QP

Thus, we find
mf — —mgl sin f

ar

6+ wising = 0
with wy = \/g being the natural frequency of the pendulum.

Relation between Work and Generalized Force

daw =V | F, - dr,

as

L nd  fr fir;
dri =3 _; 1 g, 945 + B dt
we have

aw =30 (SN Fi- 3 ) dg
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di7 — Enn’ au qu

i1 dg;
das
dW = —dU = Y| Q;dq;
therefore
Qi= 5

then
ro_ JI
dW E;” 1 (Qjciqj

On the other hand,

- Ji'u' aw
dW J | dg, d
thus
Q; — il

J ig;
Remark:

If the external forces are derivable from a potential

il
Fi= g
(with = : jr = Vr,). we have
: T T Tl N a1 O -
dW = —dU = -y (2N, 2 F) %
T nd gy
dU EJ 1 dg; i
as
s T :urf
dl¥ —dll = __‘J | @dg;
therefore
Ay
Qi =~

Lagrange Equation in Presence of Conservative and Non-
Conservative Forces

Suppose the material point i of the system is subject to conservative and non-
conservative forces
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F,; o ij} n Fj;rrf'l- _ _au n Flnr]

T i

U then
f']rL

d [ 21 o au (i)
ot (f’]rl.) Ay T g (‘)

with

(ne) _ N (ne)  or;
l:c}j E." IF." i

since (); —

If U does not depend on ¢; and ¢, then we can write
d { a(T-17) AT-U)  ~ine)
dt ( il ) g {:2,.'

By defining the Lagrangian as

F, — F{f.'} n F{rrf':- . au i FI.I;'r]

i i ir,

-.f':'f

since Q; — T . then

4 (ary  oar o au [r1e)
dt (f’]rl.) g flg, + (v) J

with
Q{_m:} . T-.Hl F{:nc} _
r || H

7 Lt ig;

If U does not depend on ¢; and £, then we can write

d [ dT-U) AT-U)  ~lnc)
dt ( i ) g {:C] j

Example:

Let a mass m slide with friction on a plane inclined at an angle o relative to the
horizontal. Determine its acceleration. This is a system with one degree of freedom and
generalized coordinate X.

The Kinetic energy T is

-
T=-mx?
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The potential energy of the system is gravitational in nature

Q'{”:' _ AW _ dW _ dU
& ir dr dr
but

QErI —p-(dre,)/de —p-e,/dc — p, — mgsina
and

. T
r — y . o — 3 .
U, — —mgsina j” dx — —mgsin aur

The Lagrangian of the system is

L=T-U-= %rrai‘g + mg sin ax

The non-conservative generalized force is

Q{-M} — oW, _ dW,
E il dz
but
(ne) / ;
Q:  —c-(dre.)/dz —c-e,/de = —cx = —f

and f — pR — pmgcos a (uis the coefficient of dynamic friction), thus
QE,-M} — — [Ig COS &

The Lagrange equation

d (ﬁ) AL _ pylne)

dft \di A T

yields

%[mi} — mgsina — — g cos o

finally resulting in

& — g(sina — pcosa)
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Viscous Friction Force: Stokes Problem

Suppose some of the forces are not derived from the potential. This is the case with
viscous friction forces

fi =~k
FI: — j',:u

where u is a unit vector in the direction of the motion and ki>0 is a proportionality
coefficient, v; is the velocity of the material point i of the system with N material points.
v is a coefficient and depending on its value, we have three types of friction:

o v=1linear or dynamic friction

e y=2 quadratic friction

e =0 Coulomb friction (solid)
The equation of motion is expressed as follows:

mx" +k;x'=F,

In the case of linear friction, the solution is
z=Ce M 4 2+ D

Example:

Consider a material point m falling from a certain height and subject to a quadratic
friction force. Determine the acceleration of the point. The system has one degree of
freedom with generalized coordinate x.

The Kinetic energy T is

1 .
=—mx
2
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The potential energy of the system is gravitational in nature
CJ':J"] _OW _ dW _ dU

with
QY —p- (dre.)/dr — p-e./de — p, — mg
and

Uy, = —mg jﬂl dr — —mgz

The Lagrangian of the system is

L=T-U-= %srr.r,:i:2 b mgx

The non-conservative generalized force is

(ne) _ aw. _ diVe
ﬂ‘] r i d

with F; — —k; .r_-';‘}u

(ne) 9 f . 9
Q. — —kviu-e,/de — —ki~

The Lagrange equation
rII (f‘“ﬁ} I!.}L _ {_‘JI[I:'H.']

dt \ oz dax

yields

s s 7}
mi + k= = mg

finally resulting in

sy ka2
I q

Viscous Friction

J‘ri = 'IL"UH
FE = fl:ll

where Uis a unit vector pointing in the direction of movement, and ki>0 a
proportionality coefficient. vi is the velocity of the material point iii in a system of N
material points. y is a positive exponent defining the friction regime, and in general,
v=y(v); however, in the low-velocity regime, experiments show that y=1. We are
interested in the case where vy is a positive real number and independent of velocity v.
From each vector, we can construct its unit vector, so
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~ =1
F; = _kr'ﬂ{ Ui
In Cartesian coordinates, the components of the force are:

- 7—1 11 o=l
Fo = —kyw] g, P'g,ri = — kv, Ui 5 F,; = kv vy

z i

On the other hand, we have:

7 | 7 | I 7
Fr= ko (=), Fy= ki (==, Fam ke
vy \ v+ 1 duy; \ v+ 1 Ju.;

Therefore, we can write the dissipation function as:

F,— -V3D; with D, —

1=1
The associated generalized force is:
N
—* aFg
Qi=> Fi-o—
¢ i° g
i=1 dqv"'
SO
N o
o1
) — VD, —
J Z 1 i E_jqj
i=1
or
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e — 7 5w .
since v; — 1; and 7a, 0;j, we obtain:
a N
Q) —d
¢l Py

: daq;

1j i

Generalized force associated with the dissipation function:

N
0D , -
Q= E with D = zl D;

Note: In practice, D is calculated as a function of the generalized velocities. The Lagrange equations

of the second kind in the presence of viscous dissipation forces are written as:

d aL) dL | oD o
dt (aq_,—, AT T

Generalized Constraint Force

Some constraints, including holonomic ones, are sometimes too complex to allow for
the emergence of new generalized coordinates in a reduced number. Other non-
holonomic constraints, such as inequalities, do not offer a way to reduce the number of
degrees of freedom. In these cases, the initial coordinates, which are too numerous, are
retained, and the question arises about the impact of the constraints on the system's
movement and their integration into the model. The answer lies in developing a general
method of extending the Lagrangian formalism. It involves constructing a constrained
Lagrangian and applying the principle of least action to derive modified Euler-Lagrange
equations. The introduction of an additional unknown per constraint, called a Lagrange
multiplier, allows the constraint to be adapted to the formalism, giving physical
meaning to the constraint equation.

We use the set of 3Nc coordinates of the system, knowing that it has nq independent
coordinates and € holonomic constraint equations, hence ¢ dependent coordinates. The
first ng coordinates are generalized and independent coordinates (no relations between

af; +
=0 Vi=1,..,n
them), so: aq; d

Only the coordinates linked by constraint equations of the form:
f."[qri_.'—'_ v Ong+kes f';l Vi = g 7 ]-:- cee T { k

Thus, we have:
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By introducing k undetermined multipliers 2, also called Lagrange multipliers, into
equation (2.13) and using the Lagrange equations of the first kind (2.7), we have:

11—k

. J na+k .
: d (0T a7 . af; .
E — Q| dg; — E A; E —dq;
LH (ﬁf}j) dq; ""‘ 9 — ( dq; q")

Feng+1 J=mg+1

Thus, we obtain:

.'.'.:—||'.' Iﬂl |
sk Tg 70T\ oT o]
a\aa ) Ty, Xi=— | 8q; =0

a';_ Li (d@,i) 2 2] Zl: gjqj] q;

To make each of the k terms in equation (2.15) zero, the Lagrange multipliers Ai_satisfy
the equation of motion:

d fiT) T Z A2 d fi
dt \ dq; fi'{,r‘,- g

This Lagrange equation of the first kind is only used for linked coordinates. Considering
all the system's coordinates, the system's equations of motion are:

Lagrange equations of the first kind in the presence of generalized constraint forces

fd (HT) T _0, f _1 |
dt \ 9¢q; quJ j oty -+ v 2 Tt

d (dT T fjdf
I [ i ( Jﬂ i . . | l‘ ., k‘
dt (dﬁ-’,i) dq; 2j y - lorg = nd LT

The term /11.2—(’;" homogeneous to a generallzed force, it is ageneralized constraint force.
j

The use of equations (2.18) does not concern the number of degrees of freedom or the
generalized coordinates to use. But, one must find the dependent coordinates and their
constraint equations. The number of Lagrange multipliers Aiequals the number of
constraints. Each unknown isaccompanied by a constraint equation.

For the N coordinates of the system with k non-holonomic constraints, we solve the
system of equations given by (2.18) and the constraint equations fi. Note that equations
(2.18) include k more terms than the Lagrange equations of the second kind.

d (oL .
____—Q r =1,...,n
dt(aq']) aq; pou )= 4N

oL k ofi .
— A= our =ng+1,....,ng+k
dt(c’)q]) aq] Q i=1 laq] p J d JAXRLVAR:]
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Example 1: Simple Pendulum
Consider a simple pendulum with mass mmm suspended by an inextensible string of
length £ and negligible mass, fixed at point O. The pendulum is set in motion by
displacing it from its equilibrium position.
The kinetic energy T of the system is given by:

T%mf‘z + 71262
The potential energy U of the system, which is gravitational, is:

U=—mgrcosH

The Lagrangian Lis:

L=T-U =§m('r 2472 §)+mgrcoso

The constraint equation is f(r,0)=r— €. The Lagrange multipliers are:

g f 9f
I.i—j — A, since —"f —1
ar or
af a
A;}a—é — () since é — 1

The Lagrange equations are:

#

d ((’?L) oL _ af

d (E;*L) dL af

at\o6) 06 o6

£

We obtain;
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.- -
mir — mré” — mgcosf — A,

N

‘If.'_‘::

I - .
m(—[r‘}ﬂj Emgrsind — 0
fdf -

Including the constraint, we get:

A, — —mlf? mg cos ¢

i %51116—”

Here, Ar represents the tension in the string, which balances the component of the

weight along the radial direction u, and the centripetal force.

Example 2: Particle Sliding on a Cylinder

Consider a material point with mass m sliding without friction on the external surface
of a cylinder with radius a.

The kinetic energy T of the system is:
T =-m(i2+r20)
The potential energy U of the system, which is gravitational, is:
U=mgrcoso
The Lagrangian L is:

L=T-U :%m('r 2472 §)+mgrcoso
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The constraint equation is f(r,0)=r—a. The Lagrange multipliers are:

g:'} ' (.-_} .
)\;.[._—f — A, since —f =1
dr dr
af of
Apg— — 0 since — —10
i 30 (0 since 30
The Lagrange equations are:
d (JL 0L ) af
dt \ or dr " Or
v y
d (OL\ oL _, 0f | _
dat \ a6 Y /R
We obtain:

. 2%
mi — mrf” + mgcosf = A,

d r
dt{”

z'r'“}é] — mgrsind = 0
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-
Ar = —mab” + mgcost

iﬁj sinf — ()
a 7 gsin

A, is the radial component along ¢, of the reaction force R™=Re,. of the lateral surface

of the cylinder, balancing the component along é.of the weight and the centripetal
force.

If we consider the second differential equation:

16
u;—f gsinf — ()
. @ .
uﬁﬁ gt sinfl — 0

% (ujﬁj L g cos 6") — 0

a’® 4 g J 8 — constant
Given that at t=0, 6=0 and =0, the constant is g.
a’§* = g(l — cos#)
R =\ — —mab* 1 mgcost — —2mg(l — cosl) + mgcosé.
We have:
R =X, —mg(3cosf — 2)

R>0 only if cos0>2/3. Beyond 6=arccos(2/3), the particle will no longer be on the lateral
surface of the cylinder.
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Example 3: Cylinder Rolling Down an Incline

Consider a cylinder of mass M and radius R rolling without slipping on an inclined
plane with an angle o\alphaa relative to the horizontal. Determine its acceleration.

The rolling without slipping condition constitutes the only constraint, so there is only
one Lagrange multiplier. The constraint equation is f(x,0)= x—R6=0, with:

9f _ of _
ax_l and 59 R

There is only one degree of freedom, but we use both coordinates xxx and 6\theta®.
The kinetic energy TTT is:

1 . 1,4
T=5mx2+5102

The potential energy U, which is gravitational, is:

aT L
M

7 dOM — g cos (; c.r) dx — mg sin adx

i

T F : - . :

U, = —mgsina dex — —mgsin aur
[ |]

The Lagrangian L of the system is:

L=T U = SNLD!-IE | 5.192 b mgr sin o

The Lagrange equations are:

d oL\ oL _ of
dt \ oOr or dr

d (OL\ OL _Of
it \ a6 o8 08
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We obtain:
mi — mgsinf — A
2
J6 = —RA

The Lagrange multiplier A has the dimension of a force, and it can be expressed as:

S

A=mi—-mgsinf = fﬁé

Soit on utilisant x ou @

e

(£ +mR*)0 - mgsina=0



