
Lagrange Formalism 

-Introduction  

In Newtonian mechanics, the motion of a system with N material points is obtained by 
solving N second-order vector differential equations or 6N scalar differential equations 

(3 for acceleration and 3 for velocity), projecting onto the 3 Cartesian coordinate axes 
and involving 6N integration constants. 

However, there are circumstances where the application of Newtonian mechanics is 

delicate, particularly when the system has internal constraints due to binding forces that 
limit the movement of the system, thus reducing its degrees of freedom. 

Newton's laws form what can be called vector mechanics, as most of the quantit ies 

involved in this description are of a vector nature (force, acceleration, velocity, position 
vector). In contrast to vector mechanics, analytical mechanics uses scalar functions 
(kinetic and potential energies). 

II-Principle of Virtual Work 

If 𝐹𝑖
⃗⃗ denotes the sum of all forces acting on the material point i of a system with N 

material points, the sum of the work done by the forces applied to the system in 
equilibrium is: 

 

where 𝛿𝑟⃗⃗⃗⃗ 
𝑖 is a virtual displacement of the system. 

Some forces among the 𝐹𝑖
⃗⃗ have identically zero virtual work, and others have mutually 

zero virtual work. These forces are called binding forces, and the remaining forces are 

applied forces: 

 

By definition, for any infinitesimally small virtual displacement compatible with the 
constraints of the problem, we can write that the virtual work of the binding forces (this 
is what is called d'Alembert's principle (1743)) is: 

 

In the case of equilibrium, we have: 

 

Example 1 
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Consider a lever in equilibrium under the action of two forces 𝐹 1  and 𝐹 2 . Determine 

the condition of equilibrium.The position vectors are written as: 

 

Giving the lever a virtual rotation δθ, we get:  

 

 

 

Since the reaction force R  does not do work, the principle of virtual work can be 

written as: 

 

Given that: 

 

It follows that: 

 

Calculation of the reaction force �⃗� : 
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If the virtual displacement is incompatible with the binding force, we give the lever a 
virtual vertical translation δr =δz𝑒𝑧⃗⃗  ⃗. The principle of virtual work then becomes: 

 

Therefore: 

 

Example 2: Double Inclined Plane 

Let two masses m1 and m2 placed on a double inclined plane and a lever in equilibr ium 

under the action of two forces 𝐹 1  et  and 𝐹 2. Determine the condition of equilibr ium 

The forces acting on the system include gravitational forces 𝑝1⃗⃗  ⃗ and 𝑝2⃗⃗⃗⃗  , tension forces 

�⃗� 1 and 𝑇2,⃗⃗ ⃗⃗  and reaction forces 𝑅1
⃗⃗⃗⃗   and �⃗� 2. 

The principle of virtual work can be written as: 

 

Since 𝑅 1⋅𝛿𝑟 1=0  and 𝑅 2⋅δ𝑟 2=0  (as 𝑅 1 and  𝑅 2are perpendicular to the virtua l 

displacements), the virtual work of 𝑅 1and  𝑅 2is identically zero. 

The virtual work of 𝑇1
⃗⃗  ⃗ and �⃗� 2 is mutually zero: 
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Since 𝛿𝑟2=𝛿𝑟1 = δr, we have (𝑇2−𝑇1).δr=0, implying 𝑇1=𝑇2. 

The virtual work of the weights is: 

 

 

Therefore: 

 

The equilibrium position is: 

 

Constraints 

A constraint is associated with a binding force that restricts or limits the possible 

movements of the system. The equations of constraints can be expressed either by: 

 Binding forces. 
 Equations of constraints containing the coordinates, their derivatives, and 

time. 

In the simplest case, these constraints can be expressed by a number l of independent 
equations among the n<N  positions 𝑟𝑖⃗⃗  and time t: 

 

These constraints are called holonomic (from Greek: "whole law"). In these constraint 

relations, the velocity r  does not appear. 

  If time is implicit in the equation, it is called holonomic scleronomic or holonomic 
stationary. 

  If time is explicit in the equation, it is called holonomic rheonomic or holonomic 

non-stationary. 

 If these constraint relations do not involve the velocity \( \dot{\vec{r}}_i \): - If time  

Degrees of Freedom 

A free particle in a 3-dimensional configuration space has 3 independent coordinates to 

determine its motion. For a system of N free material points, 3N independent 

coordinates are needed to fully determine its motion. If the system is subject to 
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constraints that limit its motion, the number of necessary coordinates to describe its 

motion reduces. In the simplest case, these constraints can be expressed by a number l 

of independent equations among the  N  positions 𝑟𝑖⃗⃗ and time t : The minimum number 

of coordinates necessary to specify the position of a system, or multiple material points, 

is called the number of degrees of freedom (DOF): n{DOF} = 3N – l 

Generalized Coordinates 

 Generalized coordinates are the necessary and independent coordinates that allow 

tracking the evolution of a system over time. They can take the form of a coordinate or 

an angle. For nd degrees of freedom, we have nd generalized coordinates. It is assumed 

that the position vector 𝑟 𝑖of material point iii is an arbitrary function of the generalized 

coordinates {qj,j=1,…,nd} of the form: 

 

From this equation, the differential form of Pfaff or Pfaffian is: 

 

Generalization of the Principle of Virtual Work 

To simplify, we consider holonomic constraints with n degrees of freedom. For any 
point in the system, we have: 

 

A compatible displacement from {q1,…,qnd,t}is any virtual displacement that could be 

imposed on the system, taking into account the constraints existing at time t: 

 

D'Alembert's Equation 
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Consider a system of material points of mass mi, subjected to binding forces 𝐹 𝑖
𝑙and 

applied forces 𝐹 𝑖
𝑎According to the fundamental principle of dynamics, we have: 

 

According to the virtual work condition: 

 

We obtain D'Alembert's equation (the sum of the virtual work of the applied forces 
and the inertia forces is zero for any compatible virtual displacement): 

 

Generalized Force 

From D'Alembert's equation and equation (2.3), we have: 

 

Introducing the generalized force Qj: 

 

Lagrange's Equations of the First Kind 

For a system with N material points subjected to holonomic rheonomic constraints 
gk(r 1,r 2,…,r N,t) ( k=1,…,ℓ), defining thus nd=3N−ℓ generalized coordinates 

{q1,q2,…,qnd} , we can invert the ndrelations qj=qj(r 1,r 2,…,r N,t)  ( j=1,…,ndj  ) to 

express the N relations: 

r i=r i(q1,q2,…,qnd,t) 

The infinitesimal displacement is: 
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The generalized velocity is defined as: 

 

Thus: 

 

The left-hand side of D'Alembert's equation (2.5): 

 

Then: 

  

On the other hand: 

 

We have: 

 

We have: 

 is the Kronecker delta. Thus, we have: 
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Thus: 

 

Then: 

 

The kinetic energy of the system is defined as: 

 

Finally, for Aj, we have: 

 

Equation (2.5) becomes: 

Lagrange's Equations of the First Kind 

 

This is a system with nd equations called Lagrange equations. 

Example: Simple Pendulum 

It is a system composed of an object which is a material point of mass mmm. Thus, the 
number of coordinates is Nc=3. The constraints are the plane xoy with equation z=0 
and since the string is inextensible, the coordinates of the mass mmm satisfy the relation 

r=√𝑥2 + 𝑦2=ℓ, and the mass moves along an arc of a circle. The number of constra int 

equations is ℓ=2, so the number of degrees of freedom is nd=1. The generalized 
coordinate is θ. The kinetic energy T is  
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Applying equation (2.7), we have 

 

Thus, we find  

 . 

Relation between Work and Generalized Force 
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Lagrange Equation in Presence of Conservative and Non-

Conservative Forces 

Suppose the material point i of the system is subject to conservative and non-
conservative forces  
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By defining the Lagrangian as  

 

Example: 

Let a mass m slide with friction on a plane inclined at an angle α relative to the 

horizontal. Determine its acceleration. This is a system with one degree of freedom and 
generalized coordinate x. 

The kinetic energy T is 

 T=
1

2
𝑚𝑥2̇  
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The potential energy of the system is gravitational in nature 

 

but  
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Viscous Friction Force: Stokes Problem 

Suppose some of the forces are not derived from the potential. This is the case with 

viscous friction forces 

 

where u is a unit vector in the direction of the motion and ki>0 is a proportionality 

coefficient, 𝑣𝑖  𝑖s the velocity of the material point i of the system with N material points. 
γ is a coefficient and depending on its value, we have three types of friction: 

 γ=1 linear or dynamic friction 

 γ=2 quadratic friction 
 γ=0  Coulomb friction (solid) 

The equation of motion is expressed as follows:  

𝑚𝑥 ̈ + 𝑘𝑖�̇�
𝛾=𝐹𝐼  

In the case of linear friction, the solution is  

 

Example: 

Consider a material point m falling from a certain height and subject to a quadratic 
friction force. Determine the acceleration of the point. The system has one degree of 
freedom with generalized coordinate x. 

The kinetic energy T is 

T=
1

2
𝑚�̇�2 
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The potential energy of the system is gravitational in nature 

 

The non-conservative generalized force is  

 

Viscous Friction 

 

where �⃗⃗�  is a unit vector pointing in the direction of movement, and ki>0 a 
proportionality coefficient. vi is the velocity of the material point iii in a system of N 
material points. γ is a positive exponent defining the friction regime, and in general, 

γ=γ(v); however, in the low-velocity regime, experiments show that γ=1. We are 
interested in the case where γ is a positive real number and independent of velocity v. 

From each vector, we can construct its unit vector, so 
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�⃗� =
�⃗⃗� 𝐼

𝑉𝐼
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Generalized Constraint Force 

Some constraints, including holonomic ones, are sometimes too complex to allow for 
the emergence of new generalized coordinates in a reduced number. Other non-

holonomic constraints, such as inequalities, do not offer a way to reduce the number of 
degrees of freedom. In these cases, the initial coordinates, which are too numerous, are 
retained, and the question arises about the impact of the constraints on the system's 

movement and their integration into the model. The answer lies in developing a general 
method of extending the Lagrangian formalism. It involves constructing a constrained 

Lagrangian and applying the principle of least action to derive modified Euler-Lagrange 
equations. The introduction of an additional unknown per constraint, called a Lagrange  
multiplier, allows the constraint to be adapted to the formalism, giving physical 

meaning to the constraint equation. 

We use the set of 3NC coordinates of the system, knowing that it has nd independent 
coordinates and ℓ holonomic constraint equations, hence ℓ dependent coordinates. The 

first nd coordinates are generalized and independent coordinates (no relations between 

them), so:  

Only the coordinates linked by constraint equations of the form: 

 

Thus, we have: 
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By introducing k undetermined multipliers λi, also called Lagrange multipliers, into 
equation (2.13) and using the Lagrange equations of the first kind (2.7), we have: 

Thus, we obtain: 

 

To make each of the k terms in equation (2.15) zero, the Lagrange multipliers λi_satisfy 

the equation of motion: 

 

This Lagrange equation of the first kind is only used for linked coordinates. Considering 

all the system's coordinates, the system's equations of motion are: 

Lagrange equations of the first kind in the presence of generalized constraint forces 

 

The term 𝜆𝑖
𝜕𝑓𝑖

𝜕𝑞𝑗
 homogeneous to a generalized force, it is a generalized constraint force. 

The use of equations (2.18) does not concern the number of degrees of freedom or the 

generalized coordinates to use. But, one must find the dependent coordinates and their 
constraint equations. The number of Lagrange multipliers λi equals the number of 
constraints. Each unknown is accompanied by a constraint equation. 

For the N coordinates of the system with k non-holonomic constraints, we solve the 
system of equations given by (2.18) and the constraint equations fi. Note that equations 
(2.18) include k more terms than the Lagrange equations of the second kind. 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞𝑗̇
) −

𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑗

𝑛𝑐          pour                  j= 1,….,nd 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞𝑗̇
)−

𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑗

𝑛𝑐 +∑ 𝜆𝑖
𝜕𝑓𝑖

𝜕𝑞𝑗

𝑘
𝑖=1          pour                 j= nd +1,….,nd+k 
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Example 1: Simple Pendulum 

Consider a simple pendulum with mass mmm suspended by an inextensible string of 
length ℓ and negligible mass, fixed at point O. The pendulum is set in motion by 

displacing it from its equilibrium position. 

The kinetic energy T of the system is given by: 

T=
1

2
𝑚�̇�2 + 𝑟2 �̇�2 

The potential energy U of the system, which is gravitational, is: 

U=−mgrcosθ 

The Lagrangian Lis: 

L=T−U =
1

2
m(ṙ2+𝑟2 �̇�)+mgrcosθ 

The constraint equation is f(r,θ)=r− ℓ. The Lagrange multipliers are: 

 

The Lagrange equations are: 

 

We obtain: 
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Including the constraint, we get: 

 

Here, λr  represents the tension in the string, which balances the component of the 
weight along the radial direction �⃗� 𝑟 and the centripetal force. 

Example 2: Particle Sliding on a Cylinder 

Consider a material point with mass m sliding without friction on the external surface 
of a cylinder with radius a. 

The kinetic energy T of the system is: 

T =
1

2
m(ṙ2+𝑟2 �̇�) 

The potential energy U of the system, which is gravitational, is: 

U=mgrcosθ 

The Lagrangian L is: 

L=T−U =
1

2
m(ṙ2+𝑟2 �̇�)+mgrcosθ 
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The constraint equation is f(r,θ)=r−a. The Lagrange multipliers are: 

 

 

The Lagrange equations are: 

 

 

   
 

We obtain: 
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𝜆𝑟 is the radial component along 𝑒 𝑟 of the reaction force R =R𝑒 𝑟 of the lateral surface 
of the cylinder, balancing the component along 𝑒 𝑟of the weight and the centripeta l 

force. 

If we consider the second differential equation: 

 

Given that at t=0, θ=0 and �̇�˙=0, the constant is g. 

. 

R>0 only if cosθ>2/3. Beyond θ=arccos(2/3), the particle will no longer be on the lateral 
surface of the cylinder. 
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Example 3: Cylinder Rolling Down an Incline 

Consider a cylinder of mass M and radius R rolling without slipping on an inclined 

plane with an angle α\alphaα relative to the horizontal. Determine its acceleration. 

The rolling without slipping condition constitutes the only constraint, so there is only 
one Lagrange multiplier. The constraint equation is f(x,θ)= x−Rθ=0, with: 

𝜕𝑓

𝜕𝑥
=1 and  

𝜕𝑓

𝜕𝜃
=−R 

There is only one degree of freedom, but we use both coordinates xxx and θ\thetaθ. 
The kinetic energy TTT is: 

T=
1

2
𝑚�̇�2+

1

2
𝐽�̇�2 

The potential energy U, which is gravitational, is: 

 

The Lagrangian L of the system is: 

 

The Lagrange equations are: 
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We obtain: 

 

The Lagrange multiplier λ has the dimension of a force, and it can be expressed as: 

 
 


