Series 1: Mathematical Logic

Exercise 1: Let P, Q and L be three logical propositions. Construct the truth tables of the following formulas:

 $(P \Longrightarrow Q) \Longrightarrow L, (P \lor Q) \Longrightarrow (L \lor Q), ((\bar{P} \lor Q) \land L) \Longrightarrow (\bar{P} \land Q) \lor (Q \land L)$

Exercise 2: Let P and Q be two logical propositions.

1) The proposition $(P \land Q) \Longrightarrow (P \lor Q)$ is-it true ?

2) Give the negation of $P \Longrightarrow Q$ and the negation of $(P \Longrightarrow Q) \Longrightarrow Q$.

Exercise 3: Let f and g be two functions of \mathbb{R} in \mathbb{R} . Translate in terms of quantifiers the following expressions:

1) f is increased, bounded, even, odd.

2) f never be null.

3) f is periodic.

4) f is increasing, decreasing.

5) f is not the null function.

6) f never has the same values in two distinct antecedents.

7) f reaches all the values of \mathbb{N} .

8) f is less than g, f is not less than g.

Exercise 4: We consider the following assertions:

1) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x+y > 0.$ 2) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \quad x+y > 0.$

3) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x+y > 0.$ 4) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \quad y^2 > x.$

5) $\forall \varepsilon \in \mathbb{R}^{+*}, \exists \alpha \in \mathbb{R}^{+*}, |x| < \alpha \Longrightarrow |x^2| < \varepsilon.$

Are these assertions true or false? Give their negations.

Exercise 5: Let P and Q be two polynomials, are the following propositions equivalent?

1) $\forall x \in \mathbb{R}, (P(x) = 0 \text{ and } Q(x) = 0) \text{ and } [(\forall x \in \mathbb{R}, P(x) = 0) \text{ and } (\forall x \in \mathbb{R}, Q(x) = 0)].$

2) $\forall x \in \mathbb{R}, (P(x) = 0 \text{ or } Q(x) = 0) \text{ and } [(\forall x \in \mathbb{R}, P(x) = 0) \text{ or } (\forall x \in \mathbb{R}, Q(x) = 0)].$

Exercise 6: Let A be a part of \mathbb{R} .

1) Let P be the proposition "For any real $x \in A$, $x^2 \ge 12$ ". Negate P.

2) Assume that $A = \emptyset$. Is the negation of P true or false? P is true or false?

Exercise 7: 1) Prove by contraposition that for any natural number n, if n^2 is even then n is even.

2) Let x be a positive or zero real. Prove that if for every positive real $y, x \leq y$, then x = 0.

3) Let $n \in \mathbb{N}^*$. Demonstrate by using the absurd (Contradiction) that $n^2 + 1$ is not a square of an integer.

Exercise 8: Prove that

 $\forall \varepsilon > 0, \, \exists N \in \mathbb{N} : (n \ge N) \Longrightarrow \left(2 - \varepsilon < \frac{2n+1}{n+2} < 2 + \varepsilon\right).$

Exercise 9: For $n \in \mathbb{N}$, let us define two properties:

 $P_n: 3$ divides $4^n - 1$ and $Q_n: 3$ divides $4^n + 1$.

1) Prove that for any $n \in \mathbb{N}$, $P_n \Longrightarrow P_{n+1}$ and $Q_n \Longrightarrow Q_{n+1}$.

2) Demonstrate that P_n is true for any $n \in \mathbb{N}$.

3) What to think, then, of the assertion: $\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n_0 \ge n \Longrightarrow Q_n$?