Series 4 : Algebraic structures

Exercise 1 :

1. We equip \mathbb{R} with the internal composition law * defined by :

$$\forall x, y \in \mathbb{R}, \quad x * y = xy + \left(x^2 - 1\right)\left(y^2 - 1\right)$$

Prove that * is commutative, not associative, and that 1 is the neutral element.

2 We equip \mathbb{R}^+ with the internal composition law * defined by :

$$\forall x, y \in \mathbb{R}^+, \quad x * y = \sqrt{x^2 + y^2}$$

Prove that * is commutative, associative, and that 0 is the neutral element. Prove that for each element x of \mathbb{R}^+ , x hasn't an inverse by *.

3 We equip \mathbb{R} with the internal composition law * defined by :

$$\forall x, y \in \mathbb{R}, \quad x * y = \sqrt[3]{x^3 + y^3}$$

Prove that the map $x \mapsto x^3$ is an isomorphism of $(\mathbb{R}, *)$ to $(\mathbb{R}, +)$. deduce that $(\mathbb{R}, *)$ is a group commutative.

Exercise 2: Let $G = \mathbb{R}^* \times \mathbb{R}$ and * the law on G defined by

$$(x, y) * (x', y') = (xx', xy' + y)$$

- 1. Prove that (G, *) is a group not commutative.
- 2. Prove that $(]0, +\infty[\times\mathbb{R}, *)$ is a sub-group of (G, *).

Exercise 3:

We equip $A = \mathbb{R} \times \mathbb{R}$ with two laws defined by :

$$(x, y) + (x', y') = (x + x', y + y')$$
 and $(x, y) * (x', y') = (xx', xy' + x'y)$

1. Prove that (A, +) is a group commutative.

2.

- a) Prove that * is commutative.
- b) Prove that * is associative
- c) Determine the neutral element of A for the law *.
- d) Prove that (A, +, *) is a ring commutative.