
Khemis Miliana University

 خميس مليانة –جامـعة جيلالي بونعامة

Faculty of Science and Technology كلية العلوم والتكنولوجيا

Mathematics and Computer Science Department قسم الرياضيات و الاعلام الالي

Module : Operations Research 1

Responsible: Dr. I. Ait Abderrahim

Tutorial sheet 3

Problem: Network flow problem (Transportation problem)

Task: Solve the problem using c++/python programming language.

2. Solve the exercises from the exercise sheet using this code and print the solution if it

matches the solution found manuallay.

Solution: cpp 1

#include <stdio.h>

#include <imsl.h>

#define NS 5

#define ND 6

int main() {

 float cmin, *x;

 float sup[NS] = { 300, 300, 600, 600, 600 };

 float dem[ND] = { 200, 100, 300, 600, 600, 600 };

 float cost[NS][ND] = {

 { 1000, 1000, 1000, 16, 10, 12 },

 { 1000, 1000, 1000, 15, 14, 17 },

 { 6, 8, 10, 0, 1000, 1000 },

 { 7, 11, 11, 1000, 0, 1000 },

 { 4, 5, 12, 1000, 1000, 0 }

 };

 x = imsl_f_transport(NS, ND, sup, dem, &cost[0][0],

 IMSL_TOTAL_COST, &cmin, 0);

 printf("Minimum cost is $%.2f", cmin);

 imsl_f_write_matrix("Solution Matrix", NS, ND, x,

 IMSL_NO_ROW_LABELS, IMSL_NO_COL_LABELS, 0);

 imsl_free(x);

 return 1;

}

Solution: Python

Khemis Miliana University

 خميس مليانة –جامـعة جيلالي بونعامة

Faculty of Science and Technology كلية العلوم والتكنولوجيا

Mathematics and Computer Science Department قسم الرياضيات و الاعلام الالي

Module : Operations Research 1

Responsible: Dr. I. Ait Abderrahim
Import PuLP modeler functions

from pulp import *

Creates the 'prob' variable to contain the problem data

prob = LpProblem("Material Supply Problem", LpMinimize)

Creates a list of all the supply nodes

factories = ["A", "B", "C"]

Creates a dictionary for the number of units of supply for each supply

node

supply = {"A": 100, "B": 200, "C":200}

Creates a list of all demand nodes

projects = ["1", "2", "3"]

Creates a dictionary for the number of units of demand for each demand

node

demand = {

 "1": 50,

 "2": 150,

 "3": 300,

}

Intermediate nodes

warehouses=["P","Q"]

Creates a list of costs of each transportation path

costs_1 = [# warehouses

 [3,2], # A factories

 [4,3], # B

 [2.5,3.5] # C

]

costs_2 = [# projects

 [2,1,4], # P warehouses

 [3,2,5], # Q

]

The cost data is made into a dictionary

costs_1 = makeDict([factories, warehouses], costs_1, 0)

The cost data is made into a dictionary

costs_2 = makeDict([warehouses, projects], costs_2, 0)

Creates a list of tuples containing all the possible routes for transport

Routes = [(w, b) for w in warehouses for b in projects]

A dictionary called 'Vars' is created to contain the referenced

variables(the routes)

vars = LpVariable.dicts("Route", (warehouses, projects), 0, None,

LpInteger)

Creates a list of tuples containing all the possible routes for transport

Routes_2 = [(w, b) for w in warehouses for b in projects]

A dictionary called 'Vars_2' is created to contain the referenced

variables(the routes)

Khemis Miliana University

 خميس مليانة –جامـعة جيلالي بونعامة

Faculty of Science and Technology كلية العلوم والتكنولوجيا

Mathematics and Computer Science Department قسم الرياضيات و الاعلام الالي

Module : Operations Research 1

Responsible: Dr. I. Ait Abderrahim
vars_2 = LpVariable.dicts("Route", (warehouses, projects), 0, None,

LpInteger)

The objective function is added to 'prob' first

prob += (

 lpSum([vars[w][b] * costs_1[w][b] for (w, b) in Routes]) +

lpSum([vars_2[w][b] * costs_2[w][b] for (w, b) in Routes_2]),

 "Sum_of_Transporting_Costs",

)

The supply maximum constraints are added to prob for each supply node

(factories)

for w in factories:

 prob += (

 lpSum([vars[w][b] for b in warehouses]) <= supply[w],

 "Sum_of_Products_out_of_factories_%s" % w,

)

The demand minimum constraints are added to prob for each demand node

(project)

for b in projects:

 prob += (

 lpSum([vars_2[w][b] for w in warehouses]) >= demand[b],

 "Sum_of_Products_into_projects%s" % b,

)

Transshipment constraints: What is shipped into a transshipment node must

ne shipped out.

for w in warehouses:

 prob += (

 lpSum([vars[f][w] for f in factories]) - lpSum([vars_2[w][p] for p

in projects])== 0,

 "Sum_of_Products_out_of_warehouse_%s" % w,

)

The problem is solved using PuLP's choice of Solver

prob.solve()

Print the variables optimized value

for v in prob.variables():

 print(v.name, "=", v.varValue)

The optimised objective function value is printed to the screen

print("Value of Objective Function = ", value(prob.objective))

Correct answer:

