Faculty of Science and Technology

Mathematics and Computer Science Department

Module : Operations Research 1

Responsible: Dr. I. Ait Abderrahim

Tutorial sheet 1

Problem: Thief optimization

A thief robs a jewellery shop. With a backpack of fixed capacity he attempts to rob the valuables. Each item he can take has a profit and a weight. When filling his backpack he must respect its total capacity (i.e., the sum of the item sizes should be less than the capacity). His goal is to maximize the total profit of the items he steals but he cannot carry too much weight.

Tasks: -1- Solve the problem using python programming language.

-2- Run the algorithm with 5 items, then with 10 items and 20 items. Report the best solutions, how many items could be taken and <u>run time</u> for <u>each case</u>.

Case 5 items: values = [40,60, 80, 100, 120]; weights = [10, 30, 25, 20, 30]; capacity = 75 **Case 10 items:** values = [40, 20, 10, 40, 60, 35, 75, 80, 100, 120]; weights = [10, 5, 25, 15, 40, 30, 25, 20, 35, 30]; capacity = 90 **Case 5items:** values = [50, 15, 30, 15, 100, 70, 80, 55, 65, 40,60, 80, 75, 60, 110, 90, 45, 40, 100, 120]; weights = [10, 30, 25, 20, 30, 5, 20, 43, 22, 14, 33, 16, 10, 30, 20, 15, 14, 19, 5, 10]; capacity = 100 **Solution**

from itertools import combinations

def ThiefProb_bruteforce(values, weights, capacity):
 n = len(values)

Generate all possible combinations of items
all_combinations = []
for r in range(1, n + 1):
 all_combinations.extend(combinations(range(n), r))

Initialize variables to store the best solution

```
best_value = 0
best_selection = []
```

Iterate through all combinations and find the best solution

for comb in all_combinations: total_value = sum(values[i] for i in comb) total_weight = sum(weights[i] for i in comb)

```
if total_weight <= capacity and total_value > best_value:
    best_value = total_value
    best_selection = list(comb)
```

return best_value, best_selection

```
# Example usage
```

values = [60, 100, 120] weights = [10, 20, 30] capacity = 50

Khemis Miliana University

Faculty of Science and Technology

Module : Operations Research 1

Mathematics and Computer Science Department

Responsible: Dr. I. Ait Abderrahim

optimal_value, selected_items = ThiefProb _bruteforce(values, weights, capacity)
print("Optimal Value:", optimal_value)
print("Selected Items:", [values[i] for i in selected_items])

Correct answer: