Master 2 - GLSD

Final Examination - Introduction to Artificial Intelligence

January 2025

Exercise N°1 (9.5 pts): The following Markov model is organized around 4 states that describe the weather conditions of a given day (Sunny, Rainy, Cloudy, Snowy):

Initial state probabilities are: (Sunny: 0.3, Rainy: 0.2, Cloudy: 0.3, Snowy: 0.1) (are not used at all) Emission probabilities for each state are as follows:

	Warm	Cold	Wet	Breezy
Sunny	0.6	0.1	0.2	0.1
Rainy	0.1	0.3	0.5	0.1
Cloudy	0.2	0.2	0.3	0.3
Snowy	0.05	0.5	0.1	0.35

Complete missing probabilities (Reflexive arcs) (01 pt)

Assuming today's weather is rainy, answer the following questions:

1) What will the weather be like tomorrow? **(01 pt)**

40% of chance will be a rainy weather

2) What is the probability that the weather will be **snowy** the day after tomorrow? **(2.5 pts)**

	Tomorrow	After tomorrow	Probability
Case 1 (Path 1)	Rainy	Snowy	0.4 × 0.15 = 0.06
Case 2 (Path 2)	Cloudy	Snowy	$0.35 \times 0.1 = 0.035$
Case 3 (Path 3)	Snowy	Snowy	$0.15 \times 0.4 = 0.06$
Case 4 (Path 4)	Sunny	Snowy	$0.1 \times 0.1 = 0.01$

P(Snowy/After-Tomorrow) = P(Path1) + P(Path2) + P(Path3) + P(Path4)= 0.06+0.035+0.06+0.01 = 0.165

16.5% of chance that the weather will be Snowy after tomorrow

3) What is the probability that the weather for the upcoming week will be: (rainy-snowy-rainy-cloudy-cloudy-sunny)? (01 pt)

P(Week)= $0.4 \times 0.15 \times 0.4 \times 0.2 \times 0.35 \times 0.4 \times 0.2 = 0.0001344 = 1.344 \times 10^{-4}$

4) What is the most probable weather for three days (today and the two following days) to have the following conditions' sequence: (Cold-Wet-Warm)? **(04 pts)**

We should evaluate 16 possible paths.

Noting that P(rainy) = 1 since we know that today is rainy

	Paths	
1	rainy ⇒ rainy ⇒ rainy	P(rainy)xP(cold rainy)xP(rainy⇒rainy)xP(wet rainy)xP(rainy⇒rainy)xP(warm rainy) = 1x0.3 x 0.4x0.5 x 0.4x0.1 = 0.0024
2	rainy⇒ rainy ⇒ cloudy	P(rainy)xP(cold rainy)xP(rainy⇒rainy)xP(wet rainy)xP(rainy⇒cloudy)xP(warm cloudy) = 1x0.3 x 0.4x0.5 x 0.35x0.2 = 0.0042
3	rainy⇒ rainy ⇒ snowy	P(rainy)xP(cold rainy)xP(rainy⇒rainy)xP(wet rainy)xP(rainy⇒snowy)xP(warm snowy) = 1x0.3 x 0.4x0.5 x 0.15x0.05 = 0.00045
4	rainy ⇒ rainy ⇒ sunny	P(rainy)xP(cold rainy)xP(rainy⇒rainy)xP(wet rainy)xP(rainy⇒sunny)xP(warm sunny) = 1x0.3 x 0.4x0.5 x 0.1x0.6 = 0.0036
5	rainy⇒ cloudy ⇒ rainy	P(rainy)xP(cold rainy)xP(rainy⇒cloudy)xP(wet cloudy)xP(cloudy⇒rainy)xP(warm rainy) = 1x0.3 x 0.35x0.3 x 0.3x0.1 = 0.00315
6	rainy⇒ cloudy⇒ cloudy	$P(rainy)xP(cold rainy)xP(rainy \Rightarrow cloudy)xP(wet cloudy)xP(cloudy \Rightarrow cloudy)xP(warm cloudy) \\ = 1x0.3 \times 0.35x0.3 \times 0.4x0.2 = 0.00252$
7	rainy ⇒ cloudy ⇒ snowy	P(rainy)xP(cold rainy)xP(rainy⇒cloudy)xP(wet cloudy)xP(cloudy⇒snowy)xP(warm snowy) = 1x0.3 x 0.35x0.3 x 0.1x0.05 = 0.0001575
8	rainy ⇒ cloudy ⇒ sunny	P(rainy)xP(cold rainy)xP(rainy⇒cloudy)xP(wet cloudy)xP(cloudy⇒sunny)xP(warm sunny) = 1x0.3 x 0.35x0.3 x 0.2x0.6 = 0.00378
9	rainy ⇒ snowy ⇒ rainy	P(rainy)xP(cold rainy)xP(rainy⇒snowy)xP(wet snowy)xP(snowy⇒rainy)xP(warm rainy) = 1x0.3 x 0.15x0.1 x 0.2x0.1 = 0.00009
10	rainy ⇒ snowy ⇒ cloudy	P(rainy)xP(cold rainy)xP(rainy⇒snowy)xP(wet snowy)xP(snowy⇒cloudy)xP(warm cloudy) = 1x0.3 x 0.15x0.1 x 0.3x0.2 = 0.00027
11	rainy ⇒ snowy ⇒ snowy	P(rainy)xP(cold rainy)xP(rainy⇒snowy)xP(wet snowy)xP(snowy⇒snowy)xP(warm snowy) = 1x0.3 x 0.15x0.1 x 0.4x0.05 = 0.00009
12	rainy ⇒ snowy ⇒ sunny	P(rainy)xP(cold rainy)xP(rainy⇒snowy)xP(wet snowy)xP(snowy⇒sunny)xP(warm sunny) = 1x0.3 x 0.15x0.1 x 0.1x0.6 = 0.00027
13	rainy ⇒ sunny ⇒ rainy	P(rainy)xP(cold rainy)xP(rainy⇒sunny)xP(wet sunny)xP(sunny⇒rainy)xP(warm rainy) = 1x0.3 x 0.1x0.2 x 0.2x0.1 = 0.00012
14	rainy ⇒ sunny ⇒ cloudy	P(rainy)xP(cold rainy)xP(rainy⇒sunny)xP(wet sunny)xP(sunny⇒cloudy)xP(warm cloudy) = 1x0.3 x 0.1x0.2 x 0.2x0.2 = 0.00024
15	rainy ⇒ sunny ⇒ snowy	P(rainy)xP(cold rainy)xP(rainy⇒sunny)xP(wet sunny)xP(sunny⇒snowy)xP(warm snowy) = 1x0.3 x 0.1x0.2 x 0.1x0.05 = 0.00003
16	rainy ⇒ sunny ⇒ sunny	P(rainy)xP(cold rainy)xP(rainy⇒sunny)xP(wet sunny)xP(sunny⇒sunny)xP(warm sunny) = 1x0.3 x 0.1x0.2 x 0.5x0.6 = 0.0018

The most probable weather for the three days (today and the two following days) to have (cold-wet-warm) is: $rainy \Rightarrow rainy \Rightarrow cloudy$

Exercise N°2 (06 pts): We want to perform an Iterative Deepening A* (IDA*) algorithm on the following tree. Each node is labelled with a utility value.

Work to do:

Goal

Exercise N°3 (4.5 pts): Consider a text corpus composed of the following sentences:

- (1) A field of machine intelligence
- (2) The study of intelligent agents
- (3) The machine becomes increasingly intelligent

Generate the appropriate TF-IDF vectorization for the text corpus (Provide a detailed description of your approach).

Solution:

$$TF(Term\ Frequency) = \frac{Number\ of\ occurences\ of\ the\ word\ in\ sentence}{Number\ of\ words\ in\ sentence}\ (0.25\ pt)$$

$$IDF(Inverse\ Document\ Frequency) = \log\left(\frac{Number\ of\ sentences\ in\ the\ corpus}{Number\ of\ sentences\ that\ include\ the\ word}\right)\ (0.25\ pt)$$

Term Frequency (TF) (1.5 pt)

	Α	field	of	machine	intelligence	The	study	intelligent	agents	becomes	increasingly
(1)	1/5	1/5	1/5	1/5	1/5	0	0	0	0	0	0
(2)	0	0	1/5	0	0	1/5	1/5	1/5	1/5	0	0
(3)	0	0	0	1/5	0	1/5	0	1/5	0	1/5	1/5

Inverse Document Frequency (IDF) (01 pt)

Α	field	of	machine	intelligence	The	study	intelligent	agents	becomes	increasingly
log(3/1)	log(3/1)	log(3/2)	log(3/2)	log(3/1)	log(3/2)	log(3/1)	log(3/2)	log(3/1)	log(3/1)	log(3/1)
0.47	0.47	0.17	0.17	0.47	0.17	0.47	0.17	0.47	0.47	0.47

TF×IDF Vectorization (1.5 pt)

	Α	field	of	machine	intelligence	The	study	intelligent	agents	becomes	increasingly
(1)	0.094	0.094	0.034	0.034	0.094	0	0	0	0	0	0
(2)	0	0	0.034	0	0	0.034	0.094	0.034	0.094	0	0
(3)	0	0	0	0.034	0	0.034	0	0.034	0	0.094	0.094