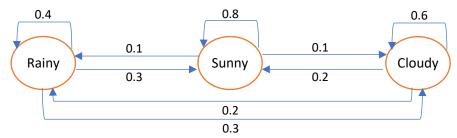
University Djilali Bounaâma of Khemis-Miliana


Department of Artificial Intelligence

Master 1 - AIBD

Final Examination - Artificial Intelligence: Principles and Applications/Correction

January 2025

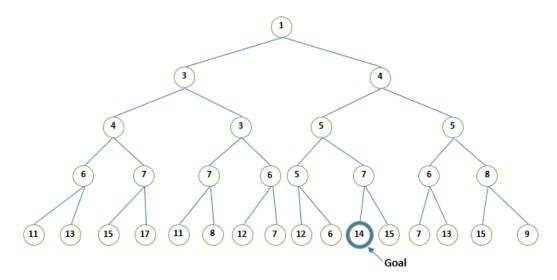
Exercise N°1 (4.5 pts): The following Markov model is organized around 3 states that describe the weather conditions of a given day (rainy, cloudy, sunny):

Assuming today's weather is **sunny**, answer the following questions:

1) What will the weather be like tomorrow? (01 pt)

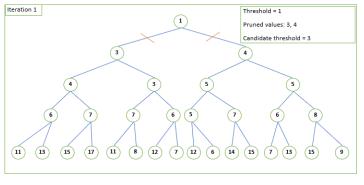
80% of chance that the weather will be Sunny

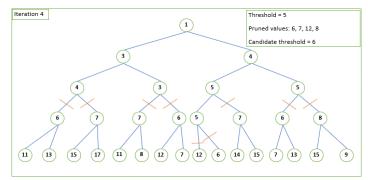
2) What is the probability that the weather will be rainy the day after tomorrow? (2.5 pts)

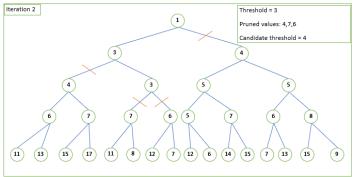

	Tomorrow	After tomorrow	Probability
Case 1 (Path 1)	Sunny	Rainy	0.8 × 0.1 = 0.08
Case 2 (Path 2)	Cloudy	Rainy	$0.1 \times 0.2 = 0.02$
Case 3 (Path 3)	Rainy	Rainy	$0.1 \times 0.4 = 0.04$

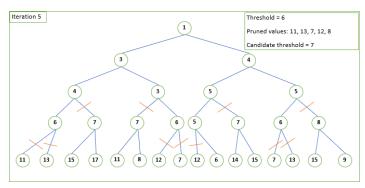
P(Rainy/After-Tomorrow) = P(Path1) + P(Path2) + P(Path3) = 0.08+0.02+0.04 = 0.14 14% of chance that the weather will be Rainy after tomorrow

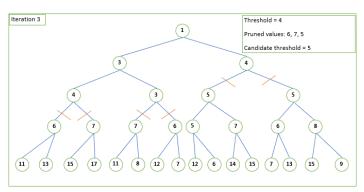
3) What is the probability that the weather for the upcoming week will be: (sunny-sunny-rainy-rainy-sunny-cloudy-sunny)? (01 pt)

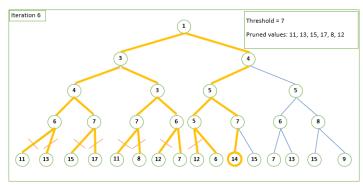

 $P(Week) = 0.8 \times 0.8 \times 0.1 \times 0.4 \times 0.3 \times 0.1 \times 0.2 = 0.0001536 = 1.536 \times 10^{-4}$

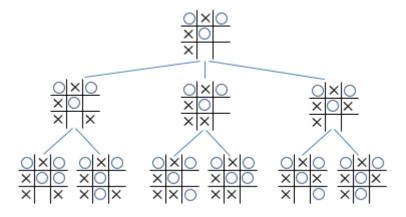

Exercise N°2 (6.5 pts): We want to perform an Iterative Deepening A* (IDA*) algorithm on the following tree. Each node is labelled with a utility value.




Work to do:


- Illustrate each iteration with an independent tree
- Indicate for each iteration: Current Threshold, Pruned values, Candidate Threshold





Exercise N°3 (6.5 pts): Consider the following Tic-Tac-Toe game tree


- 1) Complete the tree by the missing nodes and then label the final nodes as follows:
 - +1 for a win for Max, -1 for a loss for Max, 0 for a draw.
- 2) Use Alpha-Beta Pruning to cut unnecessary branches if they exist.

Solution tree:

(Missing nodes: 01) (Game interval: 0.5) (Returned value: 0.5) (Utility values: 1.5) (Cuts: 1.5)

(Cuts conditions: 0.5) (Nodes' intervals: 01) (False cut: -0.5)

Exercise N°4 (2.5 pts): match each element of a learning-based agent (left) with the appropriate concepts implemented in a backpropagation algorithm (right). (**Note:** -0.5 for every false matching):

Learning-based agent	Backpropagation	
Performance standard	→ • Input neurons	
• Critic	→ Forward-Backward propagation	
Learning element	→ • Actual output	
• Sensors	→ Loss	
Problem generator	→ • Test	