
D E A D L O C K
CHAPTER 7

1. Introduction
 In a multiprogrammed environment, multiple processes

may compete for a finite number of resources. A process

requests resources; if those resources are not available at

that time, the process enters a waiting state. It may

happen that waiting processes never change state again,

because the resources they request are held by other

waiting processes. This situation is called a deadlock.

The methods used by the system to address the deadlock

problem are :

 Prevention

 Detection

A system consists of a finite set of resources that

must be distributed to a certain number of

concurrent processes.

Resources are grouped into several types.

Resources:

Physical: printer, CPU cycle, memory space.

Logical: files, semaphores, monitors.

Resources may have multiple instances, such as

memory space, files, I/O devices, and CPU cycles.

System model

Resources may have multiple instances, such as memory space,

files, I/O devices, and CPU cycles.

A process can use a resource only according to the following

sequence of events :

1. Request: If the request cannot be satisfied immediately, the

requesting process must wait until it can acquire the

resource.

2. Use: The process has the resource and is using it.

3. Release: The process releases the resource.

Request and Release are system calls.

System model

 Request and Release are system calls.

 Exemple :
1. Request/Release ==> device
2. Open/close ==> file
3. Allocate/free ==> memory

Therefore, for each use, the operating system
(OS) must verify that the process has requested
and been allocated the resource. A system table
records the state of the resources
(free/occupied) and to which process they are
allocated.

System model

 Un ensemble de processus est dans une situation d’interblocage, quand chaque processus de
l’ensemble attend un événement qui ne peut être produit que par un autre processus. Les
évènements sont l’acquisition/ la libération de ressources.



 A deadlock can occur if the following four conditions occur simultaneously in

a system:

1. Mutual exclusion: Only one process can use a resource at a time. Other
requesting processes are placed in waiting.

2. Hold and wait: There may exist a process holding at least one resource and

waiting to acquire additional resources held by others.

3. No preemption: Busy resources cannot be preempted. Only the process

holding the resource can release it.

4. Circular wait: A circular chain of two or more processes exists, where each
process is waiting for a resource held by the next process in the chain.

DEADLOCK

 Circular wait: {P0, P2,……,Pn} set of processes waiting

Wait

P0

R0
P1

R1

Pn

Rn

Wait Wait

P2

R2
…………

Modeling Deadlocks: Resource Allocation

Graph

 Resource allocation graphs are used to model deadlock conditions. Two types of

nodes are distinguished :

 Processes

 Resources

 An arc from a process to a resource indicates that the process is blocked waiting

for that resource.

R1

P1

P1 Wait R1

P2

R2

P2 Holds R2

R3 R4

P4

P3

Circular Waiting

 Exemple:


 P= {P1, P2, P3}
 R= {R1, R2, R3, R4}

 The available instances of the resources are
as follows :

 R1 -> 1 instance ; R2 -> 2instances ;

R3 -> 1 instance ; R4 -> 3 instances.

 A= {P1 -> R1 ; P2 -> R3 ; R1 -> P2 ; R2 -> P2 ;

R2 -> P1 ; R3 -> P3}

P3 -> R2

 A resource allocation graph that does not contain a cycle implies

that the system is not in a deadlock state. If there is a cycle, then the
system may or may not be in a deadlock state.

R1

P1 P3P2

R3

R4

.

.

.

R2

.

.

Methods for Handling Deadlocks

Deadlocks can be handled using the following

methods :

Preventing deadlocks

Avoiding deadlocks

Detecting and recovering from deadlocks

5.1 Preventing deadlocks

 Principle: This method prevents one of the four conditions from occurring..

 Prevention: It is possible to prevent deadlocks if the four conditions are not met. This
can be done by implementing a policy that makes one of the conditions

impossible. However, such an implementation may introduce more problems than

it solves, as the following analysis will demonstrate. :

1. Mutual exclusion:

Eliminating exclusive access to all resources is not a practical solution. Some

resources cannot be shared. Example: Spooling.

2. Hold and wait:

Processes request resources without already holding any resources.

 First strategy: One strategy that enforces this restriction is to

require all possible resources before a process starts its

execution..

 Disadvantages :

1. The resources required by a process are not known in

advance.

2. Resources may be dependent on the execution of other

processes. For example, a process that needs to print a

document may need to wait for a printer to become

available.

3. Resources may be held for a long time before they are

actually needed. This can waste resources and lead to

performance problems.

5.1 Preventing deadlocks

 Second strategy: Processes must release all held resources when a request is

issued.

No-preemption condition:

Preemption of a resource is equivalent to forced sharing. The condition of

no-preemption is a requirement of the resource release strategy. It state that

resources cannot be preempted from processes. This is because preempting a

resource would require the process to be suspended, which could lead to

deadlocks.

Circular wait:

Eliminating circular wait is the most promising deadlock prevention

technique. To break this cycle, one method is to assign each resource a unique

priority number. Processes can only request resources if the priority is higher

than all held resources. If the resource does not have a priority higher than all

held resources, the one with the highest priority must be released first.

5.1 Preventing deadlocks

5.2 Avoiding Deadlocks

 The prevention of deadlocks is a complex problem, and there is no

single solution that works in all cases. The avoidance approach is one of

several possible solutions. It works by using additional information about

how resources will be requested to make decisions about whether to grant

or deny requests.

Principle: The use of additional information about how resources will be

requested. With this knowledge of the complete sequence of requests for

each process, we can decide for each request whether the process should

or should not wait.

• Decision: Whether the current request can be satisfied or if it must wait to

avoid a possible future deadlock. The system must take into account the

currently available resources, those allocated to each process, and the

future requests and releases of each process.

Requirements. The algorithms require::

1. Each process declares the maximum number of resources of each

type. With this information about each process, it is possible to construct

an algorithm that ensures that a system will never be in a deadlock

situation.

2. Other algorithms dynamically examine the resource allocation state

to ensure that a circular wait condition can never exist. The resource

allocation state is defined by the number of available and allocated

resources, and the maximum demands of processes..

5.2 Preventing Deadlocks

5.2.1 Healthy State
 A healthy state is one in which the system can allocate resources to each process (up to its

maximum) in a certain order and still avoid deadlock.

 <P1, P2 ,...,Pn> Is a healthy sequence of processes for the current allocation state if for

each process Pi, the resource requests of Pi can be satisfied by the currently available

resources plus the resources held by all processes Pj with j < i.

 A healthy state is not a deadlock state.

 Example.

Imagine a system with 13 printers and 3 processes P0, P1, and P2.

At time t0, the system is in a healthy state. The sequence <P1, P0, P2> is healthy.

Process

P0

P1

P2

Maximum

Resource Needs

11

5

10

Current Resource

Needs

5

2

2

However, the following state is an unhealthy state because there

does not exist a healthy sequence.











Principle: Initially, the system is in a healthy state. Whenever a

process requests a currently available resource, the system must

decide whether the resource can be allocated immediately or if the

process must wait. The request is granted only if the allocation

leaves the system in a healthy state.

Process

P0

P1

P2

Maximum

Resource Needs

11

5

10

Current Resource

Needs

5

2

3

5.2.1 Healthy State

Resource Allocation Graph Algorithm.

 Constraint: There is only one instance of each resource type.

 Principe. In addition to request and allocation arcs, we introduce a new type of arc called

a claim arc.

➢ A claim arc Pi - - -> Rj indicates that process Pi may request resource Rj at some point in

the future (having the same direction as the request arc and written in dotted lines).

➢ When process Pi requests resource Rj, the claim arc Pi - - -> Rj is transformed into a

request arc.

➢ When Rj is released by Pi, the allocation arc Rj ===> Pi is converted back into a claim

arc Pi - - -> Rj.

➢ Before a process starts its execution, all of its claim arcs must already appear in the

resource allocation graph.

➢ When process Pi requests resource Rj, the request can only be granted if the

transformation of the request arc Pi------>Rj into allocation arc Rj===>Pi does not cause a

cycle in the resource allocation graph.

➢ We check whether a state is healthy or not using a cycle detection algorithm.

Banker's Algorithm

 Constraint: There can be multiple instances of each resource type.

 Principle.

⚫Each process must declare the maximum number of instances of

each resource type that it needs.

⚫This number must be less than the total number of resources in the

system.

⚫If the allocation of the requested set of resources leaves the system

in a healthy state, then the resources are allocated.

⚫Otherwise, the process must wait for other processes to release

enough resources.

Data Structures.

•Available indicates the number of resources of each type.

Available : Array[0..N-1] of integer;

Available[i]=K ⇒ ∃ K ressources Ri.

• Max indicates the maximum demand of each process.

Max : Array[0..N-1, 0..M-1] of integer;

• Allocation indicates the number of resources allocated.

Allocation : Array[0..N-1, 0..M-1] of integer;

• Need indicates the resources needed by each process to
complete its work.

Need : Array[0..N-1, 0..M-1] of integer;

Need[i,j] = Max[i,j] – Allocation[i,j]

Algorithm for Determining the Safe State.

1. Work := available;

Finish[i]:= False; i:= 1..M

2. Find a process i such that:

a. Finish[i] = False;

b. Need[i] <= Work

c. If no such process i exists, go to step 4.

3. Work := work + allocation[i];

Finish[i]:= true;

Go to step 2;

4. If Finish[i] = true for all processes i, then the system is in a safe

state.

a. Else the system is not in a safe state.

Resource Request Algorithm

Request i: A vector of resource requests for process i.

If Requesti[j] = k then the process Pi needs K instances of

the resource type Rj.

1.If Request[i] <= Need[i], then go to step 2 Else error, the system has exceeded

its maximum claim.

2.If Request[i] <= Available, then go to step 3 Else process i must wait

3.Allocate the requested resources to process i

Available:= Available – request
i
;

Allocation
i
:= Allocation

i
+ Request

i
;

Need
i
:= Need

i
- Request

i

If the resource allocation state is safe, the transaction is
complete and the requested resources are allocated to
process Pi. However, if the new state is not safe, Pi must
wait and the old resource allocation state is restored.

The disadvantages of the algorithm are as follows:

⚫ The algorithm is indeed very expensive in terms of execution time
and memory for the system. This is because it requires maintaining
several matrices and triggering at every resource request.

⚫ Knowledge of the maximum number of resources required for
each process. This type of information is rarely available on
systems.

⚫ The algorithm may delay a resource request as soon as there is a
risk of deadlock (but in reality deadlock may not occur).

5.3 Deadlock Detection
(Detection and Recovery)

Systems may allow deadlocks to occur (assuming

that they are rare); then recover from them when

they do occur. In this environment, the system

must provide:

1. An algorithm that examines the system state to

determine if a deadlock has occurred.

2. An algorithm to recover from the deadlock.

 5.3.1 System with a Single Instance of Each Resource Type

 Constraint: One instance of each resource type. The deadlock detection

algorithm uses a variant of the resource allocation graph, called the wait

graph. We obtain this graph from the resource allocation graph by removing
resource-type nodes and folding appropriate arcs.

 An arc from process Pi to process Pj in a wait graph implies that process Pi is

waiting for process Pj to release a resource that Pi needs.

 A deadlock occurs if the wait graph contains a cycle.

Remark.

 Other algorithms are used to detect deadlocks when the system contains

multiple instances of the same resource type.

5.3.2 Recovering from Deadlocks

There are several alternatives when a deadlock

detection algorithm determines that one has

occurred.

One option is to inform the operator that a deadlock

has occurred and let them handle it manually.

Another option is to let the system automatically
recover from the deadlock. There are two options for

undoing a deadlock. One is to simply terminate one or

more processes to break the circular wait. The second

option is to preempt resources from one or more

processes in the deadlocked situation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

