
Probabilistic Reasoning

CHAPTER V



▪ Definition: Probabilistic reasoning is a method of reasoning and decision-

making that deals with uncertainty by using probabilities to represent and 

manage uncertain information

▪ Principle: Probabilistic reasoning quantifies uncertainty instead of ignoring it, 

providing a systematic framework for making predictions or decisions based 

on incomplete or ambiguous data

Probabilistic reasoning



▪ Comparison to Deterministic reasoning: 

o Deterministic Reasoning: Operates on certain, fixed outcomes.

o Probabilistic Reasoning: Works with uncertainty, offering probabilities 

of outcomes rather than fixed answers.

Probabilistic reasoning



▪ Key techniques: 

o Naïve Bayes

o Markov Models

o Bayesian Networks

o Monte Carlo Method

Probabilistic reasoning



▪ Bayes' method is a probabilistic reasoning technique. It is based on Bayes' 

Theorem, which provides a mathematical framework for updating 

probabilities as new evidence is observed. 

▪ Bayes' Theorem describes the probability of a hypothesis given evidence

▪ This technique is widely used in fields such as statistics, machine learning, and 

artificial intelligence to model uncertainty and make decisions based on 

incomplete or changing information

Bayes’ Method

Definition



Bayes’ Method

Classification problem

▪ A classification problem can, in some cases, be likened to a diagnosis problem, which involves 

making a decision based on certain parameters.

▪ For example, in the medical field, making a diagnosis means being able to associate the name 

of a disease with a certain number of symptoms presented by patients. Three essential elements 

can be identified in this problem: the patients, the diseases, and the symptoms.

o Population = Patients

o Classes = Diseases

o Features = Symptoms (Descriptions)

F → Associates a disease with a list of symptoms



Formalization

Ω : The population 

D : The set of descriptions (Features)

C : The set of classes 

X : Ω → D is the function that associates a description to all population individuals

Y : Ω → C is the function that associates a class to all population individuals

F :  D → C is the function that associates a class to all decriptions

→ Classifying is related to finding F?

Bayes’ Method

Classification problem

Note: Bayes’ method is said to be Naïve sine it assumes that all features are conditionally independent 

given the class label



Probabilities

Let’s assume that the set Ω is probabilized (labeled with Priors) and that the set D is discrete

Let’s consider P the probability defined on the population Ω, we can define the following probabilities:

▪ P(d): the probability that an element of Ω has d as description.

▪ P(k): the probability that an element of Ω belongs to class k.

▪ P(d/k): the probability that an element of class k has d as description.

▪ P(k/d): the probability that an element with d as description belongs to class k.

Bayes formula:

𝑝 𝑘/𝑑 =
𝑝(𝑑/𝑘) × 𝑝(𝑘)

𝑝(𝑑)

This formula assumes that we can evaluate the probabilities P(d/k), P(k), and P(d).

Bayes’ Method

Classification problem



Example: Let Ω be the population of a country, and we have a representative sample of the population of this 

country.

We describe individuals by a logical attribute “iPhone" which is 'True' if the individual owns an iPhone and 'False' 

otherwise.

The feature space is therefore  D = {iPhone, No iPhone}.

We wish to classify individuals into two classes: 'Wealthy' for individuals with an income above the average, and 

'Non-wealthy' for the others.

Bayes’ Method

Classification problem

We have the following information: 

▪ 40% of the population has an income above the average.

▪ 80% of wealthy people own an iPhone, while 45% of                    

     the remaining population owns an iPhone 

Class K Wealthy Non-wealthy

P(k) 0.4 0.6

P(iPhone/k) 0.8 0.45

P(No iPhone/k) 0.2 0.55



o Choice of the classification function F :

▪ First rule (Majority Class):

Assign each description (feature) to the majority class (i.e., the class for which P(k) is

maximum). The function F (called Fmaj in this case) will assign the majority class (Non-

wealthy) with a probability of 0.6 to every individual, regardless of whether they own an 

iPhone or not

o Drawback: The main disadvantage of this rule is that it does not take the 

description into account at all.

Bayes’ Method

Classification problem



o Choice of the classification function F :

▪ Second Rule (Maximum Likelihood): 

If 'd' is observed, choose the class for which this observation is the most likely (i.e., the 

class for which P(d/k) is maximum). This rule is called the maximum likelihood rule.

The classification function F (Flikelihood) will assign the class (wealthy: 0.8) to any individual 

owning an iPhone and the class (Non-wealthy) to everyone else.

It is evident that this classification function is more refined than the previous one and 

corresponds more closely to what we would intuitively expect.

Bayes’ Method

Classification problem



o Choice of the classification function F :

▪ Second Rule (Maximum Likelihood): 

The main drawback of this classification function appears in the following example:

Let’s assume three classes (Telecom engineer, Doctor, Laborer) and assume that the 

probability of a Telecom engineer owning an iPhone is equal to 1.

The maximum likelihood rule will then assign the class 'Telecom engineer' to every 

individual owning a smartphone, without taking into account the proportions of the 

different classes within the population.

Bayes’ Method

Classification problem



▪ Third rule (Bayes function) :

This rule involves assigning to a description 'd' the class k that maximizes the probability P(k/d), using Bayes' 

formula and noting that P(d) is constant P(d) = P(d/k) . P(k) + P(d/k’) . P(k’)

Note: It is therefore sufficient to choose the class k that maximizes the product [P(d/k)⋅P(k)]

▪ P(iPhone/Wealthy) × P(Wealthy) = 0.8 × 0.4 = 0.32

▪ P(No iPhone/ Wealthy) × P(Wealthy) = 0.2 × 0.4 = 0.08

▪ P(iPhone/Non-wealthy) × P(Non-wealthy) = 0.45 × 0.6 = 0.27

▪ P(No iPhone/Non-wealthy) × P(Non-wealthy) = 0.55 × 0.6 = 0.33

The function FBayes will assign the class 'wealthy' to anyone owning an iPhone and the class 'Non-wealthy' to anyone

not owning an iPhone. (in this example, FBayes=FLikelihood but this is not always the case.)

o Choice of the classification function F:

Bayes’ Method

Classification problem



Exercise: We consider two attributes to determine an individual's nationality. The attribute "height" 

which can take the values "tall" or "short" and the attribute "hair color" can take the values "brown" or 

"blonde" The possible nationalities are French and Swedish.

We assume that the French and Swedish populations are distributed as follows:

▪ In an assembly consisting of 60% Swedish and 40% of French, describe:

a. Majority decision rule?

b. Maximum likelihood? (P(d/k)↑)

c. Bayes’ rule? (P(d/k).P(k) ↑)

Bayes’ Method

Classification problem

Swedish French

Short,Brown 10 25

Short,Blonde 20 25

Tall,Brown 30 25

Tall,Blonde 40 25



A. Majority decision rule:

Each individual, regardless of their height and hair color, is assigned to the "Swedish" class, which is the 

majority (60% of the population).

Swedish French

Short,Brown 10 25

Short,Blonde 20 25

Tall,Brown 30 25

Tall,Blonde 40 25

P(k) 60% 40%

Bayes’ Method

Classification problem



B. Maximum likelihood:

An individual with a description d(height, color) is assigned to the nationality for which this description is 

the most probable, i.e., where P(d/k)is maximum. Thus, any individual with:

o (Short, Brown) will be assigned to French,

o (Short, Blonde) will be assigned to French,

o (Tall, Brown) will be assigned to Swedish,

o (Tall, Blonde) will be assigned to Swedish.

Bayes’ Method

Classification problem

Swedish French

Short,Brown 10 25

Short,Blonde 20 25

Tall,Brown 30 25

Tall,Blonde 40 25

P(k) 60% 40%



▪ P(Short,Brown/Swedish) x P(Swedish)=0.10 x 0.6=0.06

▪ P(Short,Brown /French) x P(French)=0.25 x 0.4=0.10

▪ P(Short,Blonde/Swedish) x P(Swedish)=0.2 x 0.6=0.12

▪ P(Short,Blonde/French) x P(French)=0.25 x 0.4=0.1

▪ P(Tall,Brown/ Swedish) x P(Swedish)=0.3 x 0.6=0.18

▪ P(Tall,Brown/ French) x P(French)=0.25 x 0.4=0.1

▪ P(Tall, Blonde/ Swedish) x P(Swedish)=0.40 x 0.6=0.24

▪ P(Tall, Blonde/ French) x P(French)=0.25 x 0.4=0.1

Thus, any individual with:

o (Short, Brown) will be assigned to French,

o (Short, Blonde) will be assigned to Swedish,

o (Tall, Brown) will be assigned to Swedish,

o (Tall, Blonde) will be assigned to Swedish

C. Bayes’ rule :

Bayes’ Method

Classification problem

Swedish French

Short,Brown 10 25

Short,Blonde 20 25

Tall,Brown 30 25

Tall,Blonde 40 25

P(k) 60% 40%



Origins
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▪ Hidden Markov Models (HMM) were introduced by Baum in the 1970s; this 

model is inspired by probabilistic automata

▪ A probabilistic automata is defined by a structure composed of states and 

transitions and by a set of probability distributions over the transitions. Each 

transition is associated with a symbol from a finite alphabet. This symbol is 

generated each time the transition is taken

Hidden Markov Models



Definition
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▪ An HMM is also defined by a structure composed of states and 

transitions and by a set of probability distributions over the transitions

▪ The essential difference with probabilistic automata is that the 

generation of symbols occurs at the states rather than on the 

transitions. Additionally, each state is associated not with a single 

symbol but with a probability distribution over the symbols of the 

alphabet

Hidden Markov Models



Applications
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HMMs are used in the following fields:

• Speech recognition

• Handwritten text recognition

• DNA sequence recognition

• Information extraction

• POS tagging, etc.

Hidden Markov Models



An HMM is defined by a quadruplet (S, ∑, T, G)

▪ H=(S, ∑, T, G)

▪ S : a set of N states, it contains two particular states : Start et End indicating the

beginning and end of a sequence

▪ ∑ : an Alphabet composed of M symbols.

▪ T : a matrix that indicates the probabilities of transition between states

o T = S-{end} x S-{start} → [0,1] 

▪ G : a matrix that indicates the probabilities of emission for states

o G : S-{start,end} x  ∑ → [0,1]

Formalization

Hidden Markov Models



▪ Consider P(o/s), the probability of generating the symbol o by the state s.

▪ We do associate to each state s :

o a distribution of transition probabilities :

෍

𝑠′𝜖𝑠

𝑃 𝑠 → 𝑠′ = 1

o a distribution of emission probabilities :

෍

𝑜′∈∑

𝑃(𝑜′ / 𝑠) = 1

Formalization

Hidden Markov Models



▪ The figure shows an example of HMM with 7 states and 11 transitions :

Example

Hidden Markov Models



• S={start,1,2,3,4,5,end}

• ∑={a,c,b}

• T : Transition matrix

• G : Emission matrix

Example

Hidden Markov Models



This HMM allows to generate the following observable sequences:

abca, aacb, ab,…etc.

To these observable sequences correspond the following hidden

sequences:

1-3-5-2, 1-4-5-2, 2-4

Each observable sequence could be generated by lot of possible

paths.

For example, the sequence abccb could be generated by:

Path 1 : start-1-3-5-5-2-end

Path 2 : start-1-4-5-5-2-end

Path 3 : start-2-4-5-5-2-end

Example

Hidden Markov Models



What will be the probability of generating abccb by this HMM?

Path 1 : start-1-3-5-5-2-end

Path 2 : start-1-4-5-5-2-end

Path 3 : start-2-4-5-5-2-end

P(path 1) = (0.5 x 1) x (0.7 x 0.75) x (1 x 1) x (0.25 x 1) x (0.25 x 0.8) x (0.5) = 6.5 x 10-3

P(path 2) = (0.5 x 1) x (0.3 x 0.1) x (0.6 x 1) x (0.25 x 1) x (0.25 x 0.8) x (0.5) = 2.2 x 10-3

P(path 3) = (0.5 x 0.2) x (0.5 x 0.1) x (0.6 x 1) x (0.25 x 1)x(0.25 x 0.8) x (0.5) = 0.75 x 10-3

The probability of generating the sequence abccb by this HMM is:

P(abccb) = (6.5 + 2.2 + 0.75) x 10-3 = 9.45 x 10-3

Example

Hidden Markov Models



Will: 0,75
Can: 0,25

Mary: 0,45
Jane: 0,22
Will: 0,11
Spot: 0,22

Spot: 0,25
See: 0,5
Pat: 0,25

0,25

0,75

0,11

0,33

0,11

0,45

0,25

0,75

1

POS with HMM: Example



POS with HMM: Example

N M V <E>

<S> 0,75 0,25

N 0,11 0,33 0,11 0,45

M 0,25 0,75

V 1

Mary Jane Will Spot Can See Pat

N 0,45 0,22 0,11 0,22

M 0,75 0,25

V 0,25 0,5 0,25

T: Transition matrix

G: Emission matrix



Will: 0,75
Can: 0,25

Mary: 0,45
Jane: 0,22
Will: 0,11
Spot: 0,22

Spot: 0,25
See: 0,5
Pat: 0,25

0,25

0,75

0,11

0,33

0,11

0,45

0,25

0,75

1

POS with HMM: Example

POS of « Will can spot Mary » ?



POS of « Will can spot Mary » ?

Path 1 = <S>→N→M→N→N→<E>

P(Path 1) = (0,75x0,11) x (0,33x0,25) x (0,25x0,22) x (0,11x0,45) x (0,45) = 0,0000083385

Path 2 = <S>→N→M→V→N→<E>

P(Path 2) = (0,75x0,11) x (0,33x0,25) x (0,75x0,25) x (1x0,45) x (0,45) = 0,00025842

The probability of the second sequence is much higher

POS Tags : {Will : N, can : M, spot : V, Mary : N}



HMM challenges

Let’s consider H an HMM and a given sequence of symbols O=O1O2…Ot

▪ What is the probability of generating O with H? 

Solution: Forward-backward algorithm

▪ What is the sequence of states S=S1S2…St in H that has the maximum probability of 

generating O? 

Solution: Viterbi algorithm

▪ How to adjust the parameters of H (transition and emission probabilities) to best 

represent the sequences being processed?

Solution: Baum-Welch algorithm
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