
1.10 Propositional Formulas

De�nition 1.10.1 A propositional formula is said to be atomic if it cannot be written in terms
of other propositional formulas using the fundamental connectives.

Example 1.10.2 The propositional formula p: "4 is a perfect square" is an atomic formula.
The formula "4 is a perfect square then 4 is an even number" is not an atomic formula.

De�nition 1.10.3 A propositional formula is de�ned by:

1. Every atomic formula is a propositional formula.

2. If P is a formula then P is also a formula.

3. If P and Q are formulas then (P ∧Q), (P ∨Q) and (P =⇒ Q) are also formulas.

4. Nothing else is a formula.

1.11 Predicates and Quanti�ers

De�nition 1.11.1 A predicate or propositional function is a description of the property (or
properties) a variable or subject may have. A proposition may be created from a propositional
function by either assigning a value to the variable or by quanti�cation.

De�nition 1.11.2 The independent variable of a propositional function must have a universe
of discourse, which is a set from which the variable can take values.

Discussion
Recall from the introduction to logic that the sentence " x+ 2 = 2x " is not a proposition,

but if we assign a value for x then it becomes a proposition. The phrase " x+ 2 = 2x " can be
treated as a function for which the input is a value of x and the output is a proposition.

Another way we could turn this sentence into a proposition is to quantify its variable. For
example, "for every real number x, x+ 2 = 2x " is a proposition (which is, in fact, false, since
it fails to be true for the number x = 0 ).

This is the idea behind propositional functions or predicates. As stated above a predicate is
a property or attribute assigned to elements of a particular set, called the universe of discourse.
For example, the predicate " x + 2 = 2x ", where the universe for the variable x is the set of
all real numbers, is a property that some, but not all, real numbers possess.

In general, the set of all x in the universe of discourse having the attribute P (x) is called
the truth set of P . That is, the truth set of P is

{x ∈ U | P (x)}

Examples 1.11.3 The propositional function P (x) is given by " x > 0 " and the universe of
discourse for x is the set of integers. To create a proposition from P , we may assign a value
for x. For example,

1. Setting x = −3, we get P (−3) : " −3 > 0 ", which is false.

2. Setting x = 2, we get P (2) : " 2 > 0 ", which is true.

Discussion: In this example we created propositions by choosing particular values for x.
Here are two more examples:
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Example 1.11.4 Suppose P (x) is the sentence " x has fur" and the universe of discourse for
x is the set of all animals. In this example P (x) is a true statement if x is a cat. It is false,
though, if x is an alligator.

Example 1.11.5 Suppose Q(y) is the predicate " y holds a world record," and the universe of
discourse for y is the set of all competitive swimmers. Notice that the universe of discourse
must be de�ned for predicates. This would be a di�erent predicate if the universe of discourse
is changed to the set of all competitive runners.

1.11.1 Quanti�ers

A quanti�er turns a propositional function into a proposition without assigning speci�c val-
ues for the variable. There are primarily two quanti�ers, the universal quanti�er and the
existential quanti�er.

De�nition 1.11.6 The universal quanti�cation of P (x) is the proposition " P (x) is true for
all values x in the universe of discourse."

Notation 1.11.7 "For all xP (x) " or "For every xP (x) " is written

∀xP (x)

Remark 1.11.8 There are another ways to express the existential quanti�er: "For all element
xP (x)”, "For each xP (x)".

De�nition 1.11.9 The existential quanti�cation of P (x) is the proposition
"There exists an element x in the universe of discourse such that P (x) is true."

Notation 1.11.10 "There exists x such that P (x) " or "There is at least one x such that P (x)
" is written

∃xP (x).

Remark 1.11.11 There are another ways to express the existential quanti�er: "There is . . . ",
"For some . . . ",""For at least one . . . ".

Discussion
As an alternative to assigning particular values to the variable in a propositional function, we
can turn it into a proposition by quantifying its variable. Here we see the two primary ways in
which this can be done, the universal quanti�er and the existential quanti�er.
In each instance we have created a proposition from a propositional function by binding its
variable.

Example 1.11.12 Suppose P (x) is the predicate "x + 2 = 2x”, and the universe of discourse
for x is the set {1, 2, 3}. Then

1. ∀xP (x) is the proposition "For every x in {1, 2, 3} such that x+2 = 2x." This proposition
is false.

2. ∃xP (x) is the proposition "There exists x in {1, 2, 3} such that x+ 2 = 2x." This propo-
sition is true.

Exercise 1.11.13 Let P (n,m) be the predicate ”mn > 0”, where the domain for m and n is
the set of integers. Which of the following statements are true?
(1) P (−3, 2)
(2) ∀mP (0,m)
(3) ∃nP (n,−3)
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1.11.2 Converting from English.

Example 1.11.14 Assume
F (x) : x is a fox.
S(x) : x is sly.
T (x) : x is trustworthy.
and the universe of discourse for all three functions is the set of all animals.

1. Everything is a fox: ∀xF (x).

2. All foxes are sly: ∀x[F (x)→ S(x)].

3. If any fox is sly, then it is not trustworthy

∀x[(F (x) ∧ S(x)→ ¬T (x)] ≡ ¬∃x[F (x) ∧ S(x) ∧ T (x)].

Notice that in this example the last proposition may be written symbolically in the two ways
given. Think about the how you could show they are the same using the logical equivalences
in Module 2.2.

Additional De�nitions

1. An assertion involving predicates is valid if it is true for every element in the universe of
discourse.

2. An assertion involving predicates is satis�able if there is a universe and an interpretation
for which the assertion is true. Otherwise it is unsatis�able.

3. The scope of a quanti�er is the part of an assertion in which the variable is bound by
the quanti�er.

Discussion
You would not be asked to state the de�nitions of the terminology given, but you would

be expected to know what is meant if you are asked a question like "Which of the following
assertions are satis�able?"

Example 1.11.15 If the universe of discourse is U = {1, 2, 3}, then
(1) ∀xP (x)⇔ P (1) ∧ P (2) ∧ P (3)
(2) ∃xP (x)⇔ P (1) ∨ P (2) ∨ P (3)

Suppose the universe of discourse U is the set of real numbers.
(1) If P (x) is the predicate x2 > 0, then ∀xP (x) is false, since P (0) is false.
(2) If P (x) is the predicate x2 − 3x− 4 = 0, then ∃xP (x) is true, since P (−1) is true.
(3) If P (x) is the predicate x2+x+1 = 0, then ∃xP (x) is false, since there are no real solutions
to the equation x2 + x+ 1 = 0.
(4) If P (x) is the predicate "If x 6= 0, then x2 ≥ 1 ', then ∀xP (x) is false, since P (0.5) is false.

Example 1.11.16 Consider ∀x(∃y(P (x, y)) =⇒ Q(x)).
1. The scope of the universal quanti�er is ∃y(P (x, y)) =⇒ Q(x).
2. The scope of the existential quanti�er is (P (x, y)) =⇒ Q(x)).
Explanation: 1. The scope starts with the �rst (. To �nd the end, �nd the matching ).
2. The scope starts with the �rst ( after ∃. To �nd the end, �nd the matching ). So this

statement says that, if there is some y such that P(x, y) is true, then Q is true of x. Often
the scopes of all of the quanti�ers end together at the end of the expression. But that isn't
necessary, as we see here. Where the scope ends a�ects the meaning of the expression.
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1.11.3 Multiple Quanti�ers

Multiple quanti�ers are read from left to right.
Suppose P (x, y) is " xy = 1 ", the universe of discourse for x is the set of positive integers,

and the universe of discourse for y is the set of real numbers.

Example 1.11.17 1. ∀x∀yP (x, y) may be read "For every positive integer x and for every
real number y, xy = 1. This proposition is false.

2. ∀x∃yP (x, y) may be read "For every positive integer x there is a real number y such that
xy = 1. This proposition is true.

3. ∃y∀xP (x, y) may be read "There exists a real number y such that, for every positive integer
x, xy = 1. This proposition is false.

Discussion: Study the syntax used in these examples. It takes a little practice to make it
come out right.

Ordering Quanti�ers

The order of quanti�ers is important, they may not commute. We state here some examples
showing this importance.

Examples 1.11.18 (1) ∀x∀yP (x, y) ≡ ∀y∀xP (x, y), and
(2) ∃x∃yP (x, y) ≡ ∃y∃xP (x, y),
but
(3) ∀x∃yP (x, y) and ∃y∀xP (x, y) are not logically equivalent.

Discussion: The lesson here is that you have to pay careful attention to the order of the
quanti�ers. The only cases in which commutativity holds are the cases in which both quanti�ers
are the same. In the one case in which equivalence does not hold

∀x∃yP (x, y) 6≡ ∃y∀xP (x, y)

There is an implication in one direction. Notice that if ∃y∀xP (x, y) is true, then there is
an element a in the universe of discourse for y such that P (x, a) is true for all x in the universe
of discourse for x. Thus, for all x there exists a y, namely a, such that P (x, y). That is,
∀x∃yP (x, y). Thus,

∃y∀xP (x, y)⇒ ∀x∃yP (x, y)

Notice predicates use function notation and recall that the variable in function notation is
really a place holder. The statement ∀x∃yP (x, y) means the same as ∀s∃tP (s, t). Now if this
seems clear, go a step further and notice this will also mean the same as ∀y∃xP (y, x). When
the domain of discourse for a variable is de�ned it is in fact de�ning the domain for the place
that variable is holding at that time.

Example 1.11.19 1. Here are some additional examples:

P (x, y) is " x is a citizen of y.”Q(x, y) is " x lives in y.” The universe of discourse of x
is the set of all people and the universe of discourse for y is the set of the states of Algeria.

2. All people who live in Ain De�a are citizens of Ain De�a

∀x(Q(x,Ain De�a)→ P (x,Ain De�a))
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3. Every state has a citizen that does not live in that state.

∀y∃x(P (x, y) ∧ ¬Q(x, y))

Example 1.11.20 Suppose R(x, y) is the predicate " x understands y," the universe of dis-
course for x is the set of students in your discrete class, and the universe of discourse for y is
the set of examples in this course. Pay attention to the di�erences in the following propositions.
1. ∃x∀yR(x, y) is the proposition "There exists a student in this class who understands every
example in this course."
2. ∀y∃xR(x, y) is the proposition "For every example in this course there is a student in the
class who understands that example."
3. ∀x∃yR(x, y) is the proposition "Every student in this class understands at least one example
in this course."
4. ∃y∀xR(x, y) is the proposition "There is an example in these notes that every student in this
class understands."

Exercise 1.11.21 Let P (x, y) be the predicate 2x+ y = xy, where the domain of discourse for
x is {u ∈ Z | u 6= 1} and for y is {u ∈ Z | u 6= 2}. Determine the truth value of each statement.
Show work or brie�y explain.
1. P (−1, 1)
2. ∃xP (x, 0)
3. ∃yP (4, y)
4. ∀yP (2, y)
5. ∀x∃yP (x, y)
6. ∃y∀xP (x, y)
7. ∀x∀y[((P (x, y)) ∧ (x > 0))→ (y > 1)]

3.10. Unique Existential.

De�nition 1.11.22 The unique existential quanti�cation of P (x) is the proposition "There
exists a unique element x in the universe of discourse such that P (x) is true."

Notation 1.11.23 "There exists unique x such that P (x) " or "There is exactly one xP (x) "
is written

∃!xP (x)

Discussion
Continuing with previous Example, the proposition ∀x∃!yR(x, y) is the proposition "Every
student in this class understands exactly one example in this course (but not necessarily the
same example for all students)."

Exercise 1.11.24 Let P (n,m) be the predicate mn ≥ 0, where the domain for m and n is the
set of integers. Which of the following statements are true?
1. ∃!n∀mP (n,m)
2. ∀n∃!mP (n,m)
3. ∃!mP (2,m)

Remark 1.11.25 A predicate is not a proposition until all variables have been bound either by
quanti�cation or by assignment of a value!
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De Morgan's Laws for Quanti�ers.

The fundamental rules of negation of formulas are given by De Morgan's Laws of
1. ¬∀xP (x)⇔ ∃x¬P (x)

� 2. ¬∃xP (x)⇔ ∀x¬P (x)

Discussion

Example 1.11.26 The negation of the proposition "Every �sh in the sea has gills," is the
proposition "there is at least one �sh in the sea that does not have gills."

Remark 1.11.27 If there is more than one quanti�er, then the negation operator should be
passed from left to right across one quanti�er at a time, using the appropriate De Morgan's Law
at each step.

Example 1.11.28 Continuing further with previous example, suppose we wish to negate the
proposition "Every student in this class understands at least one example in these notes." Apply
De Morgan's Laws to negate the symbolic form of the proposition

¬(∀x∃yR(x, y))⇔ ∃x(¬∃yR(x, y))

⇔ ∃x∀y¬R(x, y)

The �rst proposition could be read "It is not the case that every student in this class understands
at least one example in these notes." The goal, however, is to �nd an expression for the negation
in which the verb in each predicate in the scope of the quanti�ers is negated, and this is the
intent in any exercise, quiz, or test problem that asks you to "negate the proposition ... ."
Thus, a correct response to the instruction to negate the proposition "Every student in this
class understands at least one example in these notes" is the proposition "There is at least one
student in this class that does not understand any of the examples in these notes."

Exercise 1.11.29 Negate the rest of the statements in Example 3.9.2.

It is easy to see why each of these rules of negation is just another form of De Morgan's
Law, if you assume that the universe of discourse is �nite: U = {x1, x2, . . . , xn}. For example,

∀xP (x) ≡ P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)

so that

¬∀xP (x)⇔ ¬ [P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)]

⇔ [¬P (x1) ∨ ¬P (x1) ∨ · · · ∨ ¬P (x1)]

⇔ ∃x¬P (x)

If U is an arbitrary universe of discouse, we must argue a little di�erently: Suppose ¬∀xP (x)
is true. Then ∀xP (x) is false. This is true if and only if there is some c in U such that P (c) is
false. This is true if and only if there is some c in U such that ¬P (c) is true. But this is true
if and only if ∃x¬P (x). The argument for the other equivalence is similar.
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Exercise 1.11.30 In the questions below suppose the variable x represents students and y rep-
resents courses, and:

U(y): y is an upper-level course
M(y) : y is a math course
F (x) : x is a freshman
B(x) : x is a full-time student
T (x, y): student x is taking course y.
Write the statement using these predicates and any needed quanti�ers.
1. Ahmed is taking Logic course: T(Ahmed, Logic course).
2. All students are freshmen: ∀xF (x).
3. Every freshman is a full-time student: ∀x(F (x) =⇒ B(x)).
4. No math course is upper-level: ∀y(M(y) =⇒ ¬U(y)).

Exercise 1.11.31 In the questions below suppose the variable x represents students and y rep-
resents courses, and:

U(y) : y is an upper-level course
M(y) : y is a math course
F (x) : x is a freshman
A(x) : x is a part-time student
T (x, y) : student x is taking course y.
Write the statement using these predicates and any needed quanti�ers.
1. Every student is taking at least one course: ∀x∃y T(x,y).
2. There is a part-time student who is not taking any math course: ∃x∀y[A(x)∧ (M(y) =⇒

¬T (x, y))].
3. Every part-time freshman is taking some upper-level course: ∀x∃y[(F (x) ∧ A(x)) =⇒

(U(y) ∧ T (x, y))].

Example 1.11.32 Here is a formidable example from the calculus. Suppose a and L are �xed
real numbers, and f is a real-valued function of the real variable x. Recall the rigorous de�nition
of what it means to say "the limit of f(x) as x tends to a is L ":

lim
x→a

f(x) = L⇔

for every ε > 0 there exists δ > 0 such that, for every x,

if 0 < |x− a| < δ, then |f(x)− L| < ε

Here, the universe of discourse for the variables ε, δ, and x is understood to be the set of all
real numbers.

What does it mean to say that limx→a f(x) 6= L ? In order to �gure this out, it is useful
to convert this proposition into a symbolic proposition. So, let P (ε, δ, x) be the predicate "
0 < |x − a| < δ " and let Q(ε, δ, x) be the predicate " |f(x) − L| < ε." (It is perfectly OK to
list a variable in the argument of a predicate even though it doesn't actually appear!) We can
simplify the proposition somewhat by restricting the universe of discourse for the variables ε
and δ to be the set of positive real numbers. The de�nition then becomes

∀ε∃δ∀x[P (ε, δ, x)→ Q(ε, δ, x)]

Use De Morgan's Law to negate:
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¬[∀ε∃δ∀x[P (ε, δ, x)→ Q(ε, δ, x)]]⇔ ∃ε∀δ∃x[P (ε, δ, x) ∧ ¬Q(ε, δ, x)],

and convert back into words:
There exists ε > 0 such that, for every δ > 0 there exists x such that,

0 < |x− a| < δ and |f(x)− L| ≥ ε

Distributing Quanti�ers over Operators

Proposition 1.11.33 Let P and Q two any predicates of one single variable, then we have

1. ∀x[P (x) ∧Q(x)] ≡ ∀xP (x) ∧ ∀xQ(x), but
2. ∀x[P (x) ∨Q(x)] 6≡ ∀xP (x) ∨ ∀xQ(x).
3. ∃x[P (x) ∨Q(x)] ≡ ∃xP (x) ∨ ∃xQ(x), but
4. ∃x[P (x) ∧Q(x)] =⇒ ∃xP (x) ∧ ∃xQ(x).
Proof. 1. Part1: Show if ∀x(P (x) ∧ Q(x)) is true then ∀xP (x) ∧ ∀xQ(x) is true. Assume
∀x(P (x)∧Q(x)) is true. If a is in the universe of P and Q, then P (a)∧Q(a) is true. So, P (a)
is true and Q(a) is true. Since P (a) and Q(a) are both true for every element in the universe
of P and Q, ∀xP (x) and ∀xQ(x) are both true. So, ∀xP (x) ∧ ∀xQ(x) is true.

Part2: Show if ∀xP (x) ∧ ∀xQ(x) is true then ∀x(P (x) ∧Q(x)) is true. Assume ∀xP (x) ∧
∀xQ(x) is true. So, ∀xP (x) is true and ∀xQ(x) is true. If a is in the universe of P and Q, then
P (a) is true and Q(a) is true. If P (a) is true and Q(a) is true, then P (a)∧Q(a) is true. Since
P (a) ∧Q(a) is true for every element in the universe, ∀x(P (x) ∧Q(x)) is true. So,

∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x).

2. Give an example that ∀x(P (x)∨Q(x)) and ∀xP (x)∨∀xQ(x) have di�erent truth values.

Proof. P (x) : x is odd. Q(x) : x is even. (in the domain of integers.).
For all element (P (x) ∨Q(x)) is true. (All x is odd or even.). So, ∀x(P (x) ∨Q(x)) is true.

For all element P (x) is false. (All x is not odd.). For all element Q(x) is false. (All x is not
even.). So, ∀xP (x) ∨ ∀xQ(x) is false. Thus, ∀x(P (x) ∨ Q(x)) and ∀xP (x) ∨ ∀xQ(x) are not
logically equivalent.

Discussion
Here we see that in only half of the four basic cases does a quanti�er distribute over an

operator, in the sense that doing so produces an equivalent proposition.

Exercise 1.11.34 In each of the two cases in which the statements are not equivalent, there is
an implication in one direction. Which direction? In order to help you analyze these two cases,
consider the predicates P (x) = [x ≥ 0] and Q(x) = [x < 0], where the universe of discourse is
the set of all real numbers.

Exercise 1.11.35 Write using predicates and quanti�ers.
1. For every m,n ∈ N there exists p ∈ N such that m < p and p < n.
2. For all nonnegative real numbers a, b, and c, if a2 + b2 = c2, then a+ b ≥ c.
3. There does not exist a positive real number a such that a+ 1

a
< 2.

4. Every student in this class likes mathematics.
5. No student in this class likes mathematics.

Exercise 1.11.36 Give the negation of each statement in previous exercice using predicates
and quanti�ers with the negation to the right of all quanti�ers.

Exercise 1.11.37 Give the negation of each statement in previous exercice using an English
sentence.
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