Chapter 1

Logic and propositional calculus

1.1 Introduction

Propositional logic is a branch of mathematics that studies the logical relationships between
propositions (or statements, sentences, assertions) taken as a whole, and connected via logical
connectives. In this chapter, we will cover propositional logic and related topics in detail.
Logic is the basis of all mathematical reasoning and all automated reasoning. The rules of logic
specify the meaning of mathematical statements. These rules help us understand and reason
with statements.

The rules of logic give precise meaning to mathematical statements. These rules are used
to distinguish between valid and invalid mathematical arguments. Apart from its importance
in understanding mathematical reasoning, logic has numerous applications in Computer Sci-
ence, varying from the design of digital circuits to the construction of computer programs and
verification of the correctness of programs.

1.2 Propositional calculus

1.2.1 Proposition

Definition 1.2.1 A proposition (or statement) is a declarative statement that is either true or
false (but not both).

Notations 1.2.2

1. If a statement is true, we assign it the truth value T. If a statement is false, we assign it
the truth value F.

2. Propositions are generally denoted by the letters p,q,r... or p1, pa, ..

Examples 1.2.3 1. "} is not a perfect square” is a false proposition.

2. "The 2nd year mathematics degree class at the University of Khemis Miliana has 60
students” is not a proposition.

3. ""The 2nd year mathematics degree class at the University of Khemis Miliana for the
academic year 2015-2016 includes 30 students” is a proposition.

4. "Riyad Mahrez is a good player” is not a proposition.



1.3 Compound Propositions

Many propositions are composite, that is, composed of subpropositions and various connectives
discussed subsequently. Such composite propositions are called compound propositions.

Definition 1.3.1 A proposition is called to be primitive (or atomic) if it cannot be discomposed
into simpler propositions.

Examples 1.3.2 1. The above proposition (3) is a primitive proposition. On the other
hand, the proposition (1) is composite.

2. "Ahmed is smart or he studies every night”. is composite proposition
3. "If it is raining, then I will stay inside”. is composite proposition

4. /2 is an irrational number.

The fundamental property of a compound proposition is that its truth value is completely
determined by the truth values of its subpropositions together with the way in which they
are connected to form the compound propositions. The next section studies some of these
connectives.

1.4 Basic logical operations

This section discusses the three basic logical operations of conjunction, disjunction, and nega-
tion which correspond, respectively, to the English words “and,” “or,” and “not.” These words

are in logic called "the connectives" and are mathematically represented by “A)” “V,” and

“=. respectively. Their role is to link propositions together to form new useful composed

propositions.

1.4.1 Conjunction p A q

Any two propositions can be combined by the word “and” to form a compound proposition
called the conjunction of the original propositions.

Notation 1.4.1 Symbolically, p A\ q read “p and q” denotes the conjunction of p and q.

Since p A q is a proposition it has a truth value, and this truth value depends only on the
truth values of p and ¢q. Specifically:

Definition 1.4.2 If p and q are true, then p A\ q is true; otherwise p A q s false.

The truth value of the proposition p A ¢ is given in the following truth table

P1q|PNg
T|T|T
T|F|F
F1T | F
FIF|F




Example 1.4.3 Let p: 5 be a rational number and q : 15 be a prime number. Is it a conjunc-
tion?

Given that p : 5 is a rational number. This proposition is true. q : 15 is a prime number.
This proposition is false as 15 is a composite number 1. Therefore, as per the truth table, p and
q s a false statement. So, p\q=F

Example 1.4.4 Let p: x be greater than 9 and q : x be a prime number. Is it a conjunction?

Since x is a variable whose value we do not know. Let us define a range for p and ¢. To
find the range let us take certain values for x:
When z = 6: p and ¢ is false. Hence, p A g = F.
When z = 3: p is false but ¢ is true. But still, p A g = F.
When z = 10: p is true but q is false. But still, p A q = F.
When x = 11: p is true and ¢ is true. Hence, pAqg="T.
Hence the conjunction p and ¢ is only true when x is a prime number greater than 9.

1.4.2 Disjunction pV q

Any two propositions can be combined by the word “or” toform a compound proposition called
the disjunction of the original propositions.

Notation 1.4.5 Symbolically, p V q read “p or q”, denotes the disjunction of p and q. The
truth value of pV q depends only on the truth values of p and q as follows.

Definition 1.4.6 If p and q are false, then pV q is false; otherwise pV q is true.

The truth value of p V ¢ may be defined equivalently by the following table

P lq |pVg
TIT [T
TIF|T
FlT|T
F|F|F

Example 1.4.7 Let p: x is divisible by 2 or q : x is divisible by 3.

Let assume the different x values to prove the disjunction truth table.

For x = 12: p and q are true. Hence, pV g ="T.

For x = 4: p is true but ¢ is false. But still, pVvV ¢g="1T.

For x = 9: p is false but ¢ is true. But still, pVvV ¢ =T.

For z = 7: p is false and q is false. Hence, pV ¢ = F.

Hence the disjunction p or ¢ is only false when z is not divisible by 2 or 3.

1.4.3 Negation —p

Given any proposition p, another proposition, called the negation of p, can be formed by
writing “It is not true that . . .” or “It is false that . . .” before p or, if possible, by inserting in
p the word “not.”

Notation 1.4.8 Symbolically, the negation of p, read “not p,” is denoted by—p or p

LA composite number is a positive integer that can be formed by multiplying two smaller positive integers.



The truth value of =p depends on the truth value of p as follows:
Definition 1.4.9 If p is true, then —p is false; and if p is false, then —p s true.

The truth value of —p may be defined equivalently by the following table. Thus the truth
value of the negation of p is always the opposite of the truth value of p.

. 'ﬂ‘“@
N '11‘@\

¢

Example 1.4.10 Find the negation of the given proposition “ a number 6 is an even number”

Let “p” be the given statement: p : "6 is an even number”.
Therefore, the negation of the given statement is —p : "6 is not an even number".
Therefore, the negation of the proposition is “ 6 is not an even number”.

1.4.4 Conditional and biconditional statements

1. Conditional statement, p — ¢
Many statements, particularly in mathematics, are of the form “If p then ¢.” Such statements
are called conditional statements and are denoted by

Notation 1.4.11 Symbolically, p = q read "p implies q" or "p only if q", denotes the impli-
cation of p and q.

The truth value of p = ¢ depends only on the truth values of p and ¢ as follows.

Definition 1.4.12 The conditional p = q s false only when the first part p is true and the
second part q is false.

The truth value of p = ¢ may be defined equivalently by the following table

:}q
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Remark 1.4.13 Here are another typical ways we can express a logical implication: "If p, then
q" If p, q", "p is sufficient for q", "q if p", "q when p", "A necessary condition for q is p", "p
only if ¢", "p 1s a sufficient condition for q", "q whenever p", "q is necessary for p", "q follows
p", "p is a necessary condition for q".

Example 1.4.14 A teacher says to his students "If you answer correctly to the question I am
going to ask, I will add an extra point to your exam score”, the teacher asks his question and
no student finds the correct answer, the teacher adds a point to each student and they do not
understand. "

Example 1.4.15 If we write p : "answer correctly to the question” and q : "Add a point to
exam score”. The logical implication p = q is true in both situations (whether the teacher
adds points or not) because p is false.



Definition 1.4.16 Given an implication p => q, we define three related implications:
1. Tts converse is defined as: ¢ = p.
2. Its inverse is defined as: —p = —q
3. Its contrapositive is defined as: —q = —p.
Among them, the contrapositive -¢ = —p is the most important one.

Remark 1.4.17 An implication and its contrapositive always have the same truth value, but
this is not true for the converse.

P=4q = PpP|q="P
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Example 1.4.18

p : The sky is overcast.

q : The sun is not visible.

In this example, p => q is a true statement, assuming we are at the surface of the earth,
below the cloud layer. However, the statement ¢ = p is not necessarily true because it might
be a clear night. In this case, logical implication does not work both ways. However, the sense
of logical implication is reversed if the negation of both statements is used. That is, p = q =
—q = p.

Using the above sentences as examples, we can say that if the sun is visible, then the sky
18 not overcast. This conditional statement is always true. In fact, there is logical equivalence
between the two statements p — q and -q = —p.

2. Biconditional statement, p < ¢
Another common statement is of the form "p if and only if ¢". Such statements are called
biconditional statements.

Notation 1.4.19 Symbolically, p <= q read "p if and only if q" or "p is equivalent to q",
denotes the implication of p and q.

The truth value of p = ¢ depends only on the truth values of p and ¢ as follows:

Definition 1.4.20 The biconditional p <= q 1is true whenever p and q have the same truth
values and false otherwise.

The truth value of p <= ¢ may be defined equivalently by the following table

plag |ps=q
TIT|T
T F|F
F|IT|F
FIF|T

Remark 1.4.21 Here are another typical ways we can express a biconditional p <= q: "p 1s
necessary and sufficient for q", "if p then q, and conversel”.

Remark 1.4.22 A biconditional statement can also be defined as the compound statement
(p = q) A (¢ = p). This explains why we call it a biconditional statement. A biconditional
statement s often used to define a new concept.



1.4.5 Logical equivalence

Definition 1.4.23 Logical Equivalence. We say two propositions are logically equivalent if
p <= q is a tautology. We denote this by p = q.

Examples 1.4.24 Prove the following are equivalent

L pV(pAag)=p.
We shall prove that pV (p A q¢) <= p is au tautology, that is the implication is true in the
two senses for all propositions values. We have

LpV(pAg) = p=-(V(Aq)Vp=
= (pA=(pAq@)Vp

(-p A (=pV —q)) Vp

(=pVp)A(=pV —qVp)

TA(=pVpV—q)

= TANTV—q=T.

For the second implication, we have

2p = (PV@ANQ)=-pV(pV(PAq)
= (-pVvp)V(pAg)
= TVpAg=T

2. p=(qN—q) =p.
1.5 Propositions and truth tables

Let P(p,q,...) denote a compound proposition constructed from logical variables p, g, ..., which
take on the value TRUE (T) or FALSE (F), and the logical connectives A, V, and = (and others
discussed subsequently). Such an expression P(p,q,...) will be called a proposition.

A truth table shows how the truth or falsity of a compound proposition depends on the
truth or falsity of the simple statements from which it is constructed.

Remark 1.5.1 When we construct a truth table, we have to consider all possible assignments
of True (T) and False (F) to the component proposition. For example, suppose the component
propositions are p, q, and r. Each of these statements can be either true or false, so there are
23 = 8 possibilities. Generally, this can be determined by the formula: 2" where n is the number
of component propositions.

Example 1.5.2 Construct a truth table for the proposition: p A (pV q).

Vg |pA(PVaq)
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1.6 Tautology and Contradiction

Definition 1.6.1 A tautology ' is a proposition that is always true, regardless of the truth
values of the component propositions it contains.

Definition 1.6.2 A proposition that is always false is called a contradiction.
Notation 1.6.3 To indicate that a formula is a tautology we note- P.

Remark 1.6.4 A proposition that is neither a tautology nor a contradiction is called a contin-
gency. The term contingency is not as widely used as the terms tautology and contradiction.

Example 1.6.5 From the following truth table

p|p |PAP|PVD
T|F|F T
F1T|F T

We gather that pV p is a tautology, and p A\ p is a contradiction. In words, pV p says that either
the statement p is true, or the statement p is true (that is, p is false). This claim is always
true. The compound statement p A p claims that p is true, and at the same time, p is also true
(which means p is false). This is clearly impossible. Hence, p A\ p must be false.

1.7 Propositional laws

Propositions satisfy various laws which we list below. We state this result formally (7 and F
design truth values "True" and "False", respectively.).

Theorem 1.7.1 Propositions satisfy the following rules:
Idempotent laws: 1. pNVp=p, 2. pAp=p.
Associative laws:

1. (pVg)Vr=pVi(gVr),

2. (pANQOQNATr=pA(gAT).

Commutative laws: 1. pNV g=qVp, 2. pAqg=qADp.
Distributive laws:

LpVignr)=@VaApVr),

2.pAN(@Vr)={@AqgVI(pAT).

!The notion of tautology in the propositional calculus was first developed in the early 20th century by the
American philosopher Charles Sanders Peirce, the founder of the school of pragmatism and a major logician.
The term itself, however, was introduced by the Austrian-born British philosopher Ludwig Wittgenstein, who
argued in the Logisch-philosophische Abhandlung (1921; Tractatus Logico-Philosophicus, 1922) that all neces-
sary propositions are tautologies and that there is, therefore, a sense in which all necessary propositions say the
same thing "viz, nothing at all.




Identity laws:

1. pVF=p, 2. pANT=p, 3. pVT =T, 4. pNF=F.
Involution law: ——p = p.
Complement laws:
1. pVop=T,2. pAN—-p=T, 3 "T=F 4 -F=T.
De Morgan laws '

1. ~(pVq)=-pA—g,
2. 7(pNq)=-pV q.

Implication identity: p— q=-pVq
1.8 Principle of Substitution

Let P(p,q,...) be a tautology, and let Q:(p, q, ...),Q2(p, ¢, ...), . . . be any propositions.

Theorem 1.8.1 (Principle of Substitution): If P(p,q,...) is a tautology, then P(Q1,Qa,...) is
a tautology for any propositions Py, Py, . . ..

Interpretation: Since P(p,q,...) does not depend upon the particular truth values of its
variables p, g, ..., we can substitute P; for p, P, for ¢, . . . in the tautology P(p,q, ...) and still
have a tautology.

Example 1.8.2 Since ~pVp is a tautology, then by the principle of substitution the propositions
—“(pAq)Vpand = (pV q) V p are also tautologies.

1.9 Completeness for a set of connectives

Definition 1.9.1 A set C' of connectives is said to be complete if any propositional formula is
equivalent to a formula using only the connectives of C.

Proposition 1.9.2 The set {—,V} is a complete system of connectives.

Proof. It suffices to show that the propositions (pAq), (p = ¢) and (p <= ¢) can be written
using only the connectives — and V.

LpAg==(-pV—q),

2.p=q=-pVg,

3.ps=q=(pvVgA(~qVvp . A

!De Morgan’s laws are identities between logical propositions. They were formulated by the British math-
ematician Augustus De Morgan (1806-1871. De Morgan’s Laws describe how mathematical statements and
concepts are related through their opposites). In set theory, De Morgan’s Laws relate the intersection and
union of sets through complements. In propositional logic, De Morgan’s Laws relate conjunctions and dis-
junctions of propositions through negation. De Morgan’s Laws are also applicable in computer engineering for
developing logic gates. Interestingly, regardless of whether De Morgan’s Laws apply to sets, propositions, or
logic gates, the structure is always the same.



