Exercises Series N°4

Exercise 1

Which of the following is a possible set of quantum numbers that describes an electron? (a) n = 3, $\ell = 2$, m = -3, S = -1/2(b) n = 0, $\ell = 0$, m = 0, S = +1/2(c) n = 4, $\ell = 2$, m = -1, S = 0(d) n = 3, $\ell = 1$, m = -1, S = +1/2(e) n = 4, $\ell = -3$, m = -1, S = +1

Exercise 2

An element X belongs to the 4th period and sub-group A of the periodic table, and has a single electron in its ground state.

a) What are the possible configurations for this element?

b) Knowing that X belongs to the same group as ₉F, give its electronic configuration and atomic number Z.

Exercise 3

Consider the elements A, B, C, D, and E.

element	А	В	С	D	Е
period	6	5	5	4	4
group	II _A	II _A	II _B	VIA	VIII _A

1. Give the electronic configuration for each element.

2. Give the quantum numbers of the single electrons of elements A and D.

3. Arrange the elements in ascending order of atomic radius and ionization energy.

4. Which of these elements is the most electronegative element and the most electropositive element?

Exercise 4

1. Establish the electronic configuration and specify the atomic number, period, group and sub-group of the following elements.

A: element whose last sub-shell is $4d^2$.

B: element of the 2nd period and has 6 valence electrons.

C: ₃₀Zn.

D: Alkaline earth metal from the 5th period.

2. Assign the electronegativity value to these elements:

0,95 1,33 1,65 3,04

Exercise 5

1. Calculate the energy of the lithium atom ($_{3}Li$) and those of the Li⁺, Li²⁺ and Li³⁺ ions in their ground states.

2. Deduce the different ionization energies.

		Electron "j"		
		1s	2s2p	
Electron "i"	1s	0,31	0	
	2s2p	0,85	0,35	