Exercises Series N°3

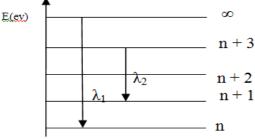
 $\begin{array}{ccc} \underline{Data:} & h=6,62.10^{-34} J.s & e=1,6.\ 10^{-19} C & m=9,1.10^{-31} \, \text{Kg} & \text{K}=9.\ 10^9 & \text{R}_{\text{H}}=1,097.10^7 \, \text{m}^{-1} \\ C=3.10^8 \, \text{m/s} & 1 \text{\AA}=10^{-10} \, \text{m} & 1 \text{nm}=10^{-9} \text{m} & 1 \text{eV}=1,6.\ 10^{-19} \text{j} \end{array}$

Exercise 1

1. According to the Bohr model, give the expression for E_n , the total energy of the electron of the hydrogen atom at energy level n.

2. Express E_n as a function of E_1 , the energy of the hydrogen atom in the ground state.

3. Calculate E_n at energy levels n= 1, 2, 3, 4, and ∞ for the hydrogen atom.


4. Represent the energy diagram.

5. Calculate the energy absorbed by the hydrogen atom to transition from the ground state to the 1^{st} excited state, 2^{nd} excited state, and the ionized state. If this energy is in the form of light, then calculate the corresponding wavelengths.

Exercise 2

In the emission spectrum of hydrogen, we consider two transitions with respective wavelengths λ_1 and λ_2 , represented in the following graph:

- 1. Determine the value of n, knowing that $\lambda_1 = 3650$ Å.
- 2. Calculate the value of the wavelength λ_2 .
- 3. To which series of lines do the two transitions belong?
- 4. What is the spectral range?

Exercise 3

A) In the emission spectrum of the hydrogen atom, calculate the wavelength λ corresponding to the 5th line of the Lyman series.

B) Calculate the energy required in (eV) to excite the electron of the hydrogen atom from the ground state to the excited level n = 2.

What is the wavelength of the light that this atom must absorb to make this transition?

C) The ionization energy of a hydrogenoid ion is equal to 54.4 eV.

1. Determine its atomic number Z, knowing that the energy of the ground state of the hydrogen atom is equal to -21,76. 10^{-19} Joules.

2. One of the final lines of the emission spectrum of this hydrogenoid has a wavelength of 2050 Å. Calculate:

a) To which series does this line belong?

b) The wavelength of the first line of this series.

Exercise 4

In the emission spectrum of hydrogen, we consider three lines with wavelengths λ_1 , λ_2 , and λ_3 such that:

wavelength	$\lambda_1 = 96.67 \text{ nm}$	$\lambda_2 = 484.85 \text{ nm}$	$\lambda_3 = 1091 \text{ nm}$
spectral range			

- 1. Complete the table.
- 2. Identify the electronic transitions corresponding to these lines.
- 3. Represent these transitions in an energy diagram.

4. The hydrogenoid $_ZX^{b+}$ undergoes the same transition corresponding to λ_2 of hydrogen, knowing that the wavelength of $_ZX^{b+}$ is $\lambda_Z = 53.87$ nm, determine its atomic number Z and its charge b?

5. Calculate the ionization energy of this hydrogenoid from its ground state.

Exercise 5

During the transition of the electron of a hydrogenoid ion $_ZX^{b+}$ from the 6th excited state to the 4th excited state, light radiation with a frequency $v = 2,57.10^{14} \text{ s}^{-1}$ is emitted.

- 1. Determine Z and deduce b.
- 2. For the same transition, calculate the wavelength λ_{H} of the hydrogen atom.
- 3. To which series of lines does it belong?
- 4. Calculate the wavelength of the first line (λ_{max}) and the final line (λ_{min}) of this series for hydrogen.
- 5. Calculate the energies in eV corresponding to the three transitions (λ_H , λ_{max} , λ_{min}).