2 Méthode de Newton

Une première méthode pour calculer le minimum de J_N consiste à chercher un point \mathbf{u}_N annulant son gradient.

L'algorithme de Newton permet de trouver un point en lequel une fonction $F: \mathbb{R}^N \to \mathbb{R}^N$ s'annule, connaissant une approximation \mathbf{u}^0 de ce point et un test d'arrêt ε :

 $Algorithme\ de\ Newton\ en\ dimension\ N$

Initialiser le compteur $k \ge 0$, l'erreur err ≥ 1 .

Tant que l'erreur est plus grande que ε et que le compteur n'est pas trop grand :

- calculer le prochain candidat pour le zéro de F:
 - $\mathbf{u}^{k+1} = \mathbf{u}^k (\nabla F(\mathbf{u}^k))^{-1} F(\mathbf{u}^k),$
- calculer l'erreur $err = |F(\mathbf{u}^{k+1})|$,
- incrémenter le compteur.
- 4. On cherche à appliquer l'algorithme de Newton à ∇J_N .
 - a. Montrer que le calcul des \mathbf{u}^k est donné par la formule suivante :

$$\mathbf{u}^{k+1} = \mathbf{u}^k - A_N^{-1} (A_N \mathbf{u}^k - \mathbf{f}_N).$$

Faire une remarque!

- b. Écrire une fonction newton.m qui prend en argument A_N , \mathbf{f}_N , un point de départ \mathbf{u}^0 et un test d'arrêt ε , et qui renvoie le vecteur \mathbf{u}_N qui minimise J_N ainsi que le nombre d'itérations effectuées.
- c. Créer un script scriptTP2_newton.m et tester la fonction newton.m pour $\varepsilon = 10^{-12}$, et N = 2, 5, 20, 50. Afficher à l'aide de la fonction fprintf le nombre d'itérations ainsi que le temps de calcul pour chaque N. Tracer sur une même figure les solutions approchées \mathbf{u}_N , ainsi que la solution exacte de (1).
- d. Imaginer une équation, <u>non</u> linéaire, du même type pour laquelle l'algorithme de Newton n'est pas trivial, et l'utiliser pour la résoudre.

3 Méthodes de gradient

3.1 Méthode du gradient à pas fixe

On rappelle l'algorithme du gradient à pas fixe pour une fonctionnelle $J: \mathbb{R}^N \to \mathbb{R}$, un point de départ \mathbf{u}^0 , un pas ρ et un test d'arrêt ε préalablement définis :

Créer un script scriptTP2_fixe.m pour répondre aux questions suivantes.

- **5.** On se place dans le cas N=2.
 - a. Calculer $J_2(u_1, u_2)$, et $\nabla J_2(u_1, u_2)$. Tracer sur une même figure les courbes de niveaux de J_2 ainsi que le champ de vecteurs ∇J_2 sur le pavé $[-10, 10] \times [-10, 10]$. On utilisera les fonctions contour et quiver.
 - b. Calculer les itérations $\mathbf{u}^k = (u_1^k, u_2^k)$ données par l'algorithme de gradient à pas fixe, et tracer sur la même figure que précédemment la ligne qui relie les \mathbf{u}^k . On prendra $\mathbf{u}^0 = (8,4), \, \rho = 0.1$ et $\varepsilon = 10^{-12}$.
- 6. On se place de nouveau dans le cas général.
 - a. Écrire une fonction gradient_fixe.m qui prend en argument A_N , \mathbf{f}_N , un point de départ \mathbf{u}^0 , un pas ρ et un test d'arrêt ε , et qui renvoie le vecteur \mathbf{u}_N qui minimise J_N ainsi que le nombre d'itérations effectuées.
 - **b.** Tester cette fonction pour $\rho = 0.1$, $\varepsilon = 10^{-12}$ et pour N = 2, 5, 20, 50. Afficher à l'aide de la fonction **fprintf** le nombre d'itérations ainsi que le temps de calcul pour chaque N. Tracer sur une même figure les solutions approchées \mathbf{u}_N , ainsi que la solution exacte de (1).
- 7. Reprendre la question 5.b. pour $\rho = 0.5$, puis $\rho = 1$. Que constate-t-on? Peut-on choisir le pas ρ arbitrairement?

Remarque:

Pour être plus générique, la fonction $gradient_fixe.m$ peut prendre pour arguments la fonction J_N et son gradient DJ_N . On pourra alors répondre à la question $\mathbf{5}$. en faisant directement appel à la fonction $gradient_fixe.m$ dont la question $\mathbf{5}$. servira alors de test de vérification.

3.2 Méthode du gradient à pas optimal

On rappelle l'algorithme du gradient à pas otimal pour une fonctionnelle $J: \mathbb{R}^N \to \mathbb{R}$, un point de départ \mathbf{u}^0 et un test d'arrêt ε préalablement définis :

```
 \begin{array}{l} \textit{M\'ethode du gradient \`a pas optimal} \\ \text{Initialiser le r\'esidu $r^0$ \`a 1 et le compteur $k$ \`a 0.} \\ \text{Tant que le r\'esidu est plus grand que $\varepsilon$ et que le compteur n'est pas trop grand :} \\ & -- \text{ calculer la descente } \mathbf{w}^k = -\nabla J(\mathbf{u}^k), \\ & -- \text{ calculer } \rho^k \geq 0 \text{ qui minimise } \rho \mapsto J(\mathbf{u}^k + \rho \mathbf{w}^k), \\ & -- \text{ poser } \mathbf{u}^{k+1} = \mathbf{u}^k + \rho^k \mathbf{w}^k, \\ & -- \text{ calculer le r\'esidu } r^{k+1} = ||\mathbf{u}^{k+1} - \mathbf{u}^k||, \\ & -- \text{ incr\'ementer le compteur.} \\ \end{array}
```

8. Créer un script scriptTP2_optimal.m et reprendre les questions 5. et 6. pour la méthode du gradient à pas optimal. On utilisera par exemple l'algorithme de la section dorée vu au TP1 pour calculer le minimiseur de $\rho \mapsto J(\mathbf{u}^k + \rho \mathbf{w}^k)$ ou alors le calculer explicitement dans le cadre du problème considéré (4). Pour la question 6.a., on écrira une fonction gradient_optimal.m qui prend en argument A_N , \mathbf{f}_N , un point de départ \mathbf{u}^0 et un test d'arrêt ε , et qui renvoie le vecteur \mathbf{u}_N qui minimise J_N ainsi que le nombre d'itérations effectuées.

3.3 Méthode du gradient conjugué

Cette méthode n'est valable que pour des fonctionnelles de la forme $J(\mathbf{u}) = \frac{1}{2}(A\mathbf{u}, \mathbf{u}) - (\mathbf{b}, \mathbf{u})$, où A est une matrice symétrique définie positive. On rappelle que l'algorithme du gradient conjugué pour une telle fonctionnelle, avec un point de départ \mathbf{u}^0 et un test d'arrêt ε préalablement définis, est donné par :

```
Méthode du gradient conjugué Initialiser le résidu r^0 à ||A\mathbf{u}^0 - \mathbf{b}||, la descente \mathbf{w}^0 à -(A\mathbf{u}^0 - \mathbf{b}), et le compteur k à 0. Tant que le résidu est plus grand que \varepsilon et que le compteur n'est pas trop grand :  - \text{ calculer } \rho^k = -\frac{(A\mathbf{u}^k - \mathbf{b}, \mathbf{w}^k)}{(A\mathbf{w}^k, \mathbf{w}^k)}, \\ - \text{ poser } \mathbf{u}^{k+1} = \mathbf{u}^k + \rho^k \mathbf{w}^k, \\ - \text{ calculer la nouvelle descente } \mathbf{w}^{k+1} = -(A\mathbf{u}^{k+1} - \mathbf{b}) + \frac{||A\mathbf{u}^{k+1} - \mathbf{b}||^2}{||A\mathbf{u}^k - \mathbf{b}||^2} \mathbf{w}^k, \\ - \text{ calculer le résidu } r^{k+1} = ||A\mathbf{u}^{k+1} - \mathbf{b}||^2, \\ - \text{ incrémenter le compteur.}
```

- 9. Créer un script script $TP2_conjugue.m$ et vérifier numériquement, pour quelques valeurs de N, que A_N est bien définie positive. On pourra utiliser par exemple la fonction eig.
- 10. Reprendre les questions 5. et 6. de la section 3.1 pour la méthode du gradient à pas optimal. Pour la question 6.a., on écrira une fonction gradient_conjugue.m qui prend en argument A_N , \mathbf{f}_N , un point de départ \mathbf{u}^0 et un test d'arrêt ε , et qui renvoie le vecteur \mathbf{u}_N qui minimise J_N ainsi que le nombre d'itérations effectuées.