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Chapter 01: Galilean Referential and

Newton Relativity

"= Galilean referential and transformations
" |nvariance of the Newtonian dynamics

" Ether and light

=  There is light in Maxwell’s equations !!!
= Electromagnetism and Newton relativity
=  Michelson-Morley experiment

=  Einstein postulates




* Frame of reference:

It is a system coordinates: (O,X,Y,Z2)
in which one can measure distances
and time. The used tape measure
and a watch are in rest within such
system, which is called “Frame of

reference”.
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Galilean referential and transformations

" Galilean frame (Inertial frame):

Galilean frame is a frame of reference in which any vl
material body undergoing a null resulting force, will move
with a constant speed and in straight line, elsewhere it

should be in rest.

In other words, in Galilean frame of reference the first

Newton law is given by:

i

In such frame of reference:

=  The time is uniform (it flows everywhere with same
way)

=  The space is homogeneous and isotropic




Galilean referential and transformations

* Galilean frame (Inertial frame):

Any other frame of reference moving linearly with a constant velocity (u = Cte) with
respect to another inertial frame (par exemple suivant OX ), is considered also as

inertial frame of reference.
WA

P(x,y,z,t)=P(x',y', z't)




Galilean referential and transformations

~ ¢ @Galilean transformations:

Both observers O and O, related to frames of reference R and R’, respectively, will measure the position of the
point P simultaneously as a function of the coordinates of each frame. This is done through time flowing

similarly in both systems.

Even the fact that both measures are shifted in time, this shift is always linear (t" =t + t, = At’ = At).
Y1 00’ =it Y’

»

P(x,y,z,t)=P(x',y', z't)

. ¥
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Galilean referential and transformations

"= X7 + y'ﬁ + z'k’; withi=i,j=j k= K (colinear unitary vectors)
- - =7 r
(uti = xT— x'i’ ut =x — x' (x = x' +ut’
7 P [=y')’ y=y' y=y'
r < _)y _})}] (_>< ’ (_>< ’
k= 2k zZ =7 zZ =7z
—— L L — _ t =1t t =1t
00 =ut=uti=7r—-1' . t=1t \ \

Galilean Transformations



Galilean referential and transformations

S B~

~o @Galilean transformations:

In the Galilean transformations, two principles are considered:
o The time t is absolute (i.e. the same in each frame of reference)

o The distance [ = AS =l = AS is also absolute (even it is measured in R or R’, the distance is

invariant, as long as the principle of the simultaneity of the measurement is verified)

(x=x"+0xy +0x2z +ut' - 1

x 1 0 0 wu|
<y:0><x’+y’+0><z’+0><t’ yY_lo 1 0 o[
z=0Xx"+0xy"+z"+0xt z 0 0 1 0|\#

t tr
E=0Xx"+0XxXy +0xz +t 0 0 0 1




Galilean referential and transformations

S B~

"+ Galilean transformations:
In the Galilean transformations, two principles are considered:
o The time t is absolute (i.e. the same in each frame of reference)

o The distance [ = AS =l = AS is also absolute (even it is measured in R or R’, the distance is

invariant, as long as the principle of the simultaneity of the measurement is verified)

(x' =x+0xy+0Xz—ut 1 0 0 —uyl
<y’=0><x+y+0><z+0><t<_) o o1 0 o y
Z =0Xx+0xXy+z+0Xt i' 0 0 1 O i
£'=0xx+0Xy+0xz+t 0 0 0 1.




Galilean referential and transformations

o Exercise :
By using the Galilean transformations, show that the distance between two points (P;P,) measured in the

frame R as:

L=y — %)%+ (v — y1)? + (2 — 21)?
Has the same value as the distance between the same points when measured simultaneously in the frame R’

moving with respect to R with a constant velocity 4 = u.7 (along the axis OX/0’X’):

( /
/ / / / / / ! ~ +ut
l=\/(x2_x1)2+(3’2_Y1)2+(22_Zl)z ;C’=;C" :
V.
(t=t




Galilean referential and transformations

. Exercise :

By using the Galilean transformations, show that the distance between two points (P;P,) measured in the

frame R as:

L= —x)%+ (2 —y1)? + (25 — 71)?

Has the same value as the distance between the same points when measured simultaneously in the frame R’

moving with respect to R with a constant velocity 4 = u.7 (along the axis OX/0’X’):
= \/(x'2 —x'1)2+ =y 1)+ (2, —7')?

. Answer:

rJ|c=x’+ut

<y=y’
z=12
(t=t

From:l' = \/(x'y — x'1)2 + (y', — ¥'1)% + ('3 — Z2'1)?, and using the Galilean transformations we get:

l' = \/((xz —ut) — (xq — ut))z + (Y2 —y1)2 + (22 — 21)% = \/((xz) — (x1))2 + (Y2 —y1)? + (2 —21)% =1



Galilean referential and transformations

e @Galilean transformations:

The matrix writing implies that each variable in a given frame, is a function of the other variables defined in

the other Galilean frame and vice-versa. This implies that the partial derivation could be written as:

d 0x; @

! [}
axl- > axl-axj

Therefore, when we pass from a given frame (S) to another one (S’), we find:

d Jd 0 Jd 0 0 .
,: , ,: , ,: —)V’:v
dx Odx dy 0dy 0z 0z
9 _ a+*V’
o ot

rJ|c=x’+ut
<y=y’

!
Z = Z
(t=t




Invariance of Newton’s mechanics

1. The velocity addition law:

: : L . d
From the Galilean transformations and performing time-derivation of each term (E):

(dx  dx' dt
(x = x' + ut E_dt'_l_uﬁ ( ,
d |y=y' dy _dy’ T VAT - B
E<Z=Z’ —>< dt _ dtl —)<Uy:Uy —)(U)/R = (U)/R,+(U,)/R
o Q_dz’ \vzzvlz
(b=t dt — dt
\dt' = dt

Thus, we obtain here the velocity addition (composition) law between inertial frames



2. Invariance of

By deriving again to obtain the acceleration in both R and R’:

the linear acceleration:

(dv, dv', . du

. , dt — dt = dt

d Vy =V, TUu =0
E“]y:v’y — < %_dv’y
vz = v, dt  dt
dv, duv,
. dt dt

Invariance of Newton’s mechanics

(
ax_ax
<—><ay=a’y
— !/

SRR /.

The acceleration is invariant in both inertial frames. Its measure is identical for each

observer being in an inertial frame of reference. (In rest or constant uniform motion)



A
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Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

Usually, the mass of a solid body is denoted « m », and it is considered as a constant

everywhere, no matter the inertial frame considered to measure it.

By using the previous results of the invariance of the acceleration, it follows that the quantity

- . . . . .
ma is also an invariant of an inertial frame.

In fact, this quantity is the definition of the resultant of the applied forces on a body of a mass

ma’)
/R

“m”, as given by the second law of the Newtonian dynamics:

(Z?i:F:mﬁ> (ZF‘:F

/R



Invariance of Newton’s mechanics

1 R -

= NP

the Newtonian dynamics:
What about the momentum (impulsion) measured within the frame R: P=mv?
It is clair that when measured in R’ (moving/R), the momentum of same body is not the same: P’ = mv' =
m(v — u)

However, the total momentum of two-body system (m, et m,), before and after their interaction :

(R) z ﬁ: z }_7)—>P1-|-P2=P3+P4<—>m1v_1>+m2v_2>=mlv_3)+m2v_4>

avant apres
(R)): E P' = E PP->P,+P,=P3;+P,omv,+myv, =mvs+m,v,
avant apres

—

Considering that any velocity v’ in (R’) is written as a function of ¥ in (R), aswell as: v'; = v; — u

3y

. Ao
TR L
9



Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

What about the momentum (impulsion) measured within the frame R: PZmv™?

By replacing in the conservation equation of momentum given in (R’):

—

(RN: mv'y + mpv'y = myv's + myv'y © my(vy — ) + my(v; — u) = my(v3 — u) + my(v, — u)
We obtain the same equation written in (R ):

my (V1) + my(vz) = my(v3) + my(vy)

The principle of the momentum conservation of a given system is always verified in

inertial frames of reference (in rest or in uniform motion).

iy e

Tk A
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Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

What about the total energy measured in the frameR: E;,; =T + U ?T = %mv2

Let’s consider two corpuscles entering in an interaction, where the potential energy of this interaction is a
function of the distance separating these two particles (U, = U(ry,)). We can write in this case, the

conservation of de E;,; in both R and R’”:

1 1 1 1
(R) T1 + T2 + U12 = T3 + T4 + U34_ < Emlvlz +Em2v22 + U12 — Emlvg +Em2v42, + U34

1 1 1
(R,): T,]_ + T,2 + U’12 — T,3 + T,4 + U,34_ « Emlv’% + Emzv’% + U,12 = Emlvlg + Emzv,i + U,34



Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

What about the total energy measured in the frameR: E;,; =T + U ?T = %mv2

By using the fact that:

—
!/

* Vi= 7{ — l_i
© Ui =U2) &1z =112 2 U@'12) = U(ry2) > U’ = Uy
We obtain through a simple mathematical calculus that the energy conservation in R’ turns to be:

1 1

1 1 —_— —_—N\ = — —_—N\ =
(R):5myvi + 5 mpvs + Us, w = 53 +5mvg + Usy + W



W TR

Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

What about the total energy measured in the frameR: E;,; =T + U ?T = %mv2
' 1 2, 1 2 1 2, 1 2
(R) < (R):Emlvl + Emzvz + U12 - Em1V3 + Em2v4 + U34_

This result indicates that the conservation of the total energy of an isolated system in a given inertial frame (R),
implies the conservation of the same quantity in another inertial frame (R’) moving with a constant velocity with

respect of the first frame (R).
The total energy conservation principle of a given system is always verified,

whatever the used inertial frame!!!



» The laws of mechanics (classical or Newtonian) are invariant by Galilean
transformations: they are always formulated in the same way, whatever the inertial
frame in which we express them

» The mathematical formulation is preserved when passing from a Galilean frame to
another. There is no preferred frame of reference to formulate the (classical) laws of
physics.

» The Galilean frames are all equivalent to describe any given physical event or

phenomenon obeying Newton laws. The choice is only dictated by the observer.

Invariance of Newton’s mechanics



Ether and ||ght Huygens-Fresnel principle or the

wave theory of light

» Luminiferous Ether (sl »83):

TRAITE

DE LA LVMIERE.

After the establishment of the sound theory and its

w Siivite. | propagation during 17™ and 18™ centuries, it follows

Avec un Difeowrs de la Canfe

that material medium (solid or fluid) is necessary to

allow the sound propagation. Therefore physicists AV . ».
: C. Huygens A. Fresnel
borrow the same concept to propose a kind of a  (1629-1695, NL)  (1788-1827, FR)

necessary medium to the propagation of light. It is

called Luminiferous Ether (Luminiferous Aether).




Ether and ||ght Huygens-Fresnel principle or the

.. wave theory of light
e Luminiferous Ether:

or oA ) Indeed, the light obey to wave equation, with f

Sopiy e as the wave function:
v Af 1 9*f OfF = 0 (0 = A 1 9°
-z vZoz T U TR T2

Y L 5 //

_ ] C. Huygens A. Fresnel
possible de explain some phenomena observed  (1629-1695, NL)  (1788-1827, FR)

Besides that, using the wave theory it is

with light beams:
- Diffraction

- Interference e |




Ether and light

* Light velocity:
According to this theory, the

o ainiseies | €ther constitute an absolute

Avec un Difeowrs de la Canfe

frame for the Ilight wave
propagating with a constant

celerity ¢ = 299792458 m/s.

First measurements of light celerity:

« J.Bradely in 1729 (¢ = 3.01 x 108 m/s),

« H. Fizeau in 1849 (¢ = 3.15 x 108m/s),

« L.Foucaultin 1862 (c = 2.98 x 108 m/s)




Ether and light

Unfortunately, this medium

TRAITE

DELalE L MIERE should gather at the same time

Les canfes de ce qui luy arrive

Dans la REFLEXION, & dansJa

REFRACTION.

| paradoxical properties:

DV CRISTAL DISLANDE,

Par C. H. D. Z.
Asec un Difeonrs de la Canfe
DE LA PESANTEYVR

= |t should have an infinite

rigidity to allow light to travel

over important distances with

a constant celerity

Ll L

= |t should be elastic to vibrate sufficiently in such a way the light will propagate as a

wave

= |t should have almost null resistance to allow material objects to move freely with

respect to it without the slightest friction




TRAITE

DE LA LVMIERE.

O font expliquées
Les canfes de ce qui luy arrive

Dans la REFLEXION, & dansJa
REFRACTION.

Et particulierement
Dans l'etrange REFRACTION
DV CRISTAL DISLANDE,
Par C. H. D. Z.
Asec un Difeonrs de la Canfe
DE LA PESANTEVNR

T A T
hez PIERRE vanoes Az, Marchand Libraire,
MDCXG

Ether and light

] 1 1 \
1 ] 1 \

AR R ERERRERER



There is light in Maxwell’s equations !!!

* Electromagnetism before Maxwell:

(1) V.E = :40 The Gauss law

(2) VAE = — % The Faraday law

(3) V.B=0 The Gauss law of magnetism
(4) VAB = ﬂoi The Ampere law

J.C. Maxwell
(1831-1879, UK)

With the continuity equation: 222+ 7.j = 0




There is light in Maxwell’s equations !!! W) VE=
_ (2) VAE=-=
« Electromagnetism before Maxwell: @ FE o

4) VAB =y

As we know that for any vector A: V . (V AA) =0

Left-hand term of (2): V.(V AE) =0
Right-hand term of (2):

—> _@) . _i — —> . . —> —>_ d ,
\% ( 6t) = ( o (v B)) = 0; because V . B=0 (3 equation)

"/‘/“‘

©wnsniit—

J.C. Maxwell | SN N
(1831-1879, UK) Left-hand term of (4): V.(V AB) =0

Right-hand term of (4):

V.(uo)) =10 (V.J)Z0  Not always true !!!




There is light in Maxwell’s equations !!!

The Maxwell’s equations:

Maxwell introduced the displacement current: D = g, =

Such as:i - j + B, thus the 4th Eq. becomes:

- oF
VAB =po(J +D) = pof + Hogo—5- EY:

Now, let’s recalculate and verify V. (V A §) =0:

J.C. Maxwell s sy p = EOGE ap 806 — —
(1831-1879, UK) V.J+D) =Vj+V.D=-—+V. = — . (V.E) E)

at at

£O

Thus, we could verify always that: V. (V) A §) = 0; Vi

« This is the Maxwell correction >




J.C. Maxwell
(1831-1879, UK)

There is light in Maxwell’s equations !!!

 The Maxwell’s equations (1685):

df dg dh
e+d_f+d_g+d_=0 (1) Gauss’ Law
x dy [z
i di  dG
dy dz
_dfF di Equivalent to Gauss’ Law
= 2 dx @) for magnetism
S48
dx dy
dy dz| dF d¥
P= -~ B |- _
Bt dt p dt] dat  dx
d= s dG  dv Faraday’s Law
Q=u i ¥ EJ T (3) (with the Lorentz Force
Y and Poisson’s Law)
dx dy) dH a¥
R= g [
M@ dtj dt  d-
dl — d£ = 4@' 1 df
dy dz =P )
d d
d_a e d_y =4 g =q+ d_g (4) Ampére-Maxwell Law
z ax dt
ﬁ = dﬁ 4 =7 +_h
dx dy t
P=-% Q=-& R=-%& Ohm's Law
The electric elasticity
P = k — k R = kh
f Q=tg equation (E = D/g)
de dp dq d
§+d—i+d—f+d—r=0 Continuity of charge
»dz

The present-day vector

edition of Maxwell’'s

equations, were elaborated
by the
Heaviside in 1884.

Oliver HEAVISIDE
(1850-1925,UK)

physicist  O.

(1) V.E = eﬁ Maxwell-Gauss law
0
(2) VAE =— o Maxwell-Faraday law
(3) V.B=0 Magnetism Maxwell-Gauss

— — - aE
4) VAB = puyJ + HOSOE Maxwell-Ampere law



There is light in Maxwell’s equations !!!

 The Maxwell’s equations:
W)V.E=2X @VAE+%=0

€0

(3) E)E):O (4)?/\5)—[1080%:”0_)
dp(t)

With the continuity equation: 2=+ V. = 0

s/ 55

(1;3?1';";%“3:() « The Maxwell’s equations inform us how electrical charges

produce fields, and reciprocally the E.M force law, inform us

how fields affect electrical charges»




There is light in Maxwell’s equations !!!

 The Maxwell’s equations (free space p = 0,J = 0):

W)V.E=0 (2)V’AE’+‘;—’:=0

(3) V.B=20 (4)V/\B—[,l08()a:0
Exercise : (test: 20min)
3.C. Maxwell If we know that for any vector Z, we have always:

(1831-1879, UK)

T A(V AZ) = B(F.4) - AZ

Calculate then: 7 A (_V) N E')) etV A (_V) /\1_3))




There is light in Maxwell’s equations !!!

 The Maxwell’s equations (free space p = 0,J = 0):

Exercise : (test: 20min)
If we know that for any vector X, we have always:
A (VAZ) = V(V.4) - a4

Calculate then: V A (_|7> A f) et V A (_|7> /\l_f)

Answer:
J: Maxwell B _|7) A (_V) A E')) — _V)(_V) E')) — AE') PIRN _|7) Al — @ _ _V)(O) o AE
(1831-1879, UK) ' ot
0 . . 0 0E . (1) VE=0
_E(VAB):_E Moo = —AE (2 VAE+Z =0
32F 92 (3) V.B=0

R N N OF

AE—‘U()E()F AE_[,[()E()F—O (3) VAB_FOSOE_O




There is light in Maxwell’s equations !!!

 The Maxwell’s equations (free space p = 0,J = 0):

Exercise : (test: 20min)

If we know that for any vector X, we have always:

¥ A(VAZ) = F(V.4) - A4

Calculate then: V A (_|7> A f) et V A (_|7> /\l_f)

J.C. Maxwell VA (V N\ B) V(V B) AB & VA (‘u € aE) - _|7>(()) — AB
(1831-1879, UK) 0€0
uoeol_f N ( ) —AB & Mogo ([7 A E)= _AB (1) V.E=0 )
(2) VAE +% =0
AB+#O€O§ _a_ AB_[.logo_atz =0 (3) —V>A§_”0£0%_O




Ether and ||ght Huygens-Fresnel principle or the

.. wave theory of light
e Luminiferous Ether:

or oA ) Indeed, the light obey to wave equation, with f

Sopiy e as the wave function:
v Af 1 9*f OfF = 0 (0 = A 1 9°
-z vZoz T U TR T2

Y L 5 //

_ ] C. Huygens A. Fresnel
possible de explain some phenomena observed  (1629-1695, NL)  (1788-1827, FR)

Besides that, using the wave theory it is

with light beams:
- Diffraction

- Interference e |




There is light in Maxwell’s equations !!!

 The Maxwell’s equations (free space p = 0,J = 0):

Exercise:

We have:

€ — 8.854 187 8128 x 10~ 12 [CZ_N_l_m_z]; Lo = 4T X 10_7[N.A_2]

( 1
@ ¥ 1. Calculate the product: uney and deduce .
v f < p lJ'O O \/m

3 B 2. Interms of physical units, what does represent this quantity?

J.C. Maxwell 3. Show that, for material medium (not a free space) where € = gp&, = (1 + x,)
(1831-1879, UK)

and i = poi, = to(1 + x.,,), that \/% is always lower than a given superior limit

to define.

We have: y, > 0et y,, >0




There is light in Maxwell’s equations !!!

 The Maxwell’s equations (free space p = 0,J = 0):
Answer:

2
(1) oo = 8.854 187 8128 x 1078 x 47 x 10~7 = 111.2650055 x 1017 ’AC ]

2 m2

1

Eolo

€0ty = 111.2650055 x 107"°[s%.m"2] » —— = 299792458 []

o \ (2) According to the unity [%], this quantity represents a velocity. This velocity is the light

celerity in free space:

o trmm—

| VEoHo
J.C. Maxwell
(1831-1879, UK) 3/since:y, >0ety,,>0,then:y,+1>1ety,+1>1:

(xe + D( xy + 1) > 1; this implies that:

1

1
e = ool (Xe + D (xm + 1] > opg — \/Eoﬂo[()(e + D (xm + DI > gouo = N < Teollo




There is light in Maxwell’s equations !!!

 The Maxwell’s equations (free space p = 0,J = 0)

AE 0"k AF — 0"k 0
— g — — —
T Hofog¢2 c2 9t?
ar.Spat ~ —
Propagation
AB o' AB — o5 0
— En———— = —_——— =
- Ho%o g2 cZ dt?
ar.Spat. ~——
Propagation
JC ,;jaxwe” Therefore, in a free space and in absence of charges and currents, the

(1831-1879, UK)

Maxwell’s equations show that electrical and magnetic fields

propagate as a wave with a constant velocity v = c:
LA N
R N

Cc




Maxwell’s equatlons under Galllean transformations:

The invariance of distance under Galilean transformations implies the invariance of volume. This signifies

that the measured density of electrical charge in a fixed frame (R) is the same as measured in another

moving frame (R’) with constant velocity with respect to (R) :

p'=p

J=p.v
Then, in a moving inertial frame (R’), this current density is given by:
_; 3 — — 2 —
J =p-v’ =p¥—u) =] - pu

We could easily verify that: v ] + at’ f+ a_p =0

In other hand, for charges moving with a velocity v in a frame (S), the current density could be written:



EM and Newton relativity

equations under Galilean vy ¢

E
transformations: t
|

To find how the expressions of E.M fields will :
behave under the Galilean transformations, we :
will consider the linear and uniform moveme v |
'5—» |

(u = Cte) of a charged particle (e~ or p for :
|

|

|

|

example) in an inertial frame (R) where an EM

® & ® &
® & ® ®
® & ® ®

field is present, defined by the orthogonal doublet 0

<y ® ® ® ®ml

D
(E, §) as shown in the opposite figure. _(I/Z



EM and Newton relativity

Il AN

equations under Galilean v 1 E =
transformations: t t t

X' ! R® QR
= This charged particle will feel an E.M force acting on | | |
| | [
it, which is given in the frame (R) by : | = |

) ® I ® Fl® | ®
F=q(E+uAB) ! ! U !

= |f we consider now another moving inertial frame ® : ® : ® : ®
) | | I
(R’) related to the particle, in a way we get: v’ = u — : : :

U = 0, then the EM force could be seen in (R’) as: 0O ® : ® : ® : ®

>

X

D
F - q(F +3F) = gF ~



P < A
BN RS - \*

equations
transformations:

-

under Galilean

= Therefore, the invariance of the Newton second law
in an inertial frame implies that:
F =F’>—>q(§+ﬁ)\§) =qE’)
Which leads to: E' = FE + i A B

= With the fact that § is normal to the movement
direction of (R’) with respect to (R), it will be
measured with the same value in both frames:

B'=B

>

Y

® & ® &

E
t
|
l
|
l
|
l
|
l
|
l
|
l
|

® & ® ®

_—_—_—_—_—_—_*

Tl

2 ®

EM and Newton relativity

® & ®

_—_—_—_—_—_—_*

O.\
=

B
X
®
®
®
X>
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Maxwell’s equations under Galilean transformations:

= Now, lets rewrite the Maxwell’s equations in the new frame (R’), since we know that in

(R) we have:
(1) _|7) E = gﬂ (2) l_7> ANE + Z—f =0 in addition of the continuity equation: a;;_(tﬂ + l_7)]> =0
0
—_ — — — 1 aE') -
(3) V.B=20 (4)|7/\B—c—2—t=ﬂ0]

Let’s verify if these equations are invariant under Galilean transformations (p’ = p,J’ = 0):

o P oAty 9B _
(1) V'.E' =~ @V ANE'+——=0
3) V.B'=0 @V AB -2 =y J

c? atr



-

Maxwell’s equations under Galilean transformations:

. Byreplacingwith:_'>=l_?>+ﬁ/\§and§’=§,and byusing:_’>=v>,%=%+Tiﬁ,wegetforthe 1st
equation:
- = g —_ = — - —_ = - — — - 1 aE
|7(E+uAB)=£—>|7E+|7(iiAB)=|7E+B.|7Aii—ii(|7AB)=£——2_’——ﬁ x
&o 5 T oo g €% 0Ot g

—

= By considering the vector identity: VA (AAB) = A(V.B) — B(V.A) + (B.V)A — (A.V)B, the 2" equation

will verify the same one asin (R) :

~ o _ = OB - - 0B _— ., o oo
|7/\(E+uAB)+at,=|7/\E+a+17/\(u)\B)+(u.|7)li=O V

v
~— —
v _O




EM and Newton relativity

A Iy s ' EASD
=S L L NS 111 a

Maxwell’s equations under Galilean transformations:

By replacing with: EE = E +4 A B and B’ = B, and by using: V = v, o= %+Tiﬁ, we get for the 3™

equation:
FF-rE<0 N

And for the 4t equation, we have:

- - 13(E+dArB) - — 10E 1, - 19, - 1, _
VAB-Z———0 =|7/\BTC2 at—cz(u.v E— 5 (UAB) -5 (V)iAB =0 x

The Galilean transformation did not preserve the
Maxwell’s equations !!!




In the same way, we could get similar results for the wave equation of E.M fields when we try to write it in a

moving inertial frame (R’), where we get non-invariant equation under Galilean transformations:

- 22 . 23
(S):AE—clza—E=0etAB—ia—B=0

a2 c2 at?

— 2 2 2 — 2p 2p 2p
(S): AE — 525 42 (Zu IE —uz“)=0etAB—l"’B+l(2u 75 —u203)=0 x

c2 9tz ¢2 c2 gtz 2 dxratr dxr2

The Galilean transformation did not preserve the

Maxwell’s equations !!!




wacres Michelson-Morley experiment (1887)

(1852-1931, US)
The Michelson-Morley experiment is based on the wave nature of Light

and superposition principle of waves:
Wave

displacement —

bk o distance —
o i A = wavelength
E. W. Morley y = amplitude A=c.T

(1838-1923, US)



A. A. Michelson
(1852-1931, US)

iy

e R

E. W. Morley
1838-1923, US)

Michelson-Morley experiment (1887)

We could obtain,

constructive interferences

(Ax = nA), and destructive

2n+1

interferences (Ax = A




(1852-1931, US)

wacres  Michelson-Morley experiment (1887)

: TER AR e s 'R

o ¥ |
E. W. Morley
(1838-1923, US)




wacrel Michelson-Morley experiment (1887)

(1852-1931, US)

Orbital movement of Earth around the Sun, or in other
words with respect to Ether

&)

v=30km/s

| E. W. Morley
(1838-1923, US)



wacrel Michelson-Morley experiment (1887)

(1852-1931, US)

A = 59004; v = 30km/s

T L ?‘- L |
‘ “‘ lA —_ lB — 11m
FR r o= 2L
," N T e2-y2
£ ermv (14 + lp)v?
c/ ~ .
I AN = > = 0.4 fringes
! ‘ AC
L / \
L > L , L
Light ,"' "‘. R h=%cv "o | d=d,
source ! R : .
O e e )
e 5 L i Ay, P
’ Ve !/ '
'\, Longitudinal and
Longitudinal and 8¢ ! transverse waves Yoi
o o transverse waves 'y ) expected to be
A ¥ expected to arrive W\ differentially d=d,
in phase when \ /' retarded when
SO — \‘\ >
. i - . iy

E. W. Morley
(1838-1923, US)




A. A. Michelson
(1852-1931, US)

E. W Morley
(1838-1923, US)

Michelson-Morley experiment (1887)

The results of the observations are expressed graphically in
fig. 6. The upper is the curve for the observations at noon,
and the lower that for the evening observations. The dotted

curves represent one-eighth of the theoretical displacements. It
seems fair to conclude from the figure that if there is any dis-

6.
e —_— 005
’4‘ e —
- s
- ~
” - —
” ~
” ~
~ - —
L4 ~
‘;:———_—-“‘~__, >
- go
~
\\ ”
~ P
————— — 005 "~ 2
- - -~ -
/’ ‘\\ —_— - -’

c?

-
-
. 'u“
il T

placement due to the relative motion of the earth and the
luminiferous ether, this cannot be much greater than 001 of

the distance between the fringes.
Considering the motion of the earth in its orbit only, this

AN, 4 fringes

Negative experiment: failure
to verify the existence of

Luminiferous Ether

AN¢yp< 0.01 fringes



Einstein postulates SR

In his reasoning, A. Einstein relies on the

principle of relativity which stipulates that in

..’-’. v v G . L g g y
. ’/-. L = : <

0 /17 7 S . <
- l A qe

Galilean frames, all laws of physics are {77

B 3§
’“l

equivalent (they should be expressed in the L R

\\l
DR

\ ’\ ’.
\ R =

L N
T

(

same way), whatever the observer and the

used frame to describe the physical event.

(\ ,
7 _\ -
‘



Einstein postulates

For A. Einstein, the Maxwell’s equations are an

example of physical laws respecting this principle,

since they proved themselves !!!

';’ ,'"""/' _. | 1} . 2
However, they should not change under Galilean {7 '

transformations when we pass from inertial frame to '\{t «
A
another; =

Thus, the concept of luminiferous ether is not really
necessary to describe the light propagation (even for

the rest of physical phenomena).



Einstein postulates

= The fact that, the Galilean transformations do not
preserve the invariance of Maxwell’s equations,
necessary implies to reconsider its two fundamental

principles: absolute time and absolute distance.

"'-

" Indeed, according to A. Einstein, the Lorentz t

;k

DR

transformations are the most convenient and suitable
tools to describe physical laws within inertial frames,
especially when velocities become significant in front

of light velocity c.




Einstein postulates

Postulate 1: The physical laws are all the same

(invariant) in all inertial frames (non accelerated frames).

Postulate 2: The light celerity in free space :

|
c = = 299792458 m/s
VHRo€o

Is an universal constant and did not depend on the

movement of the source.




Einstein postulates

Thus, A. Einstein advances a new invariant on the basis

of the light celerity constancy, measured in Galilean

frame R:

r
c=——>r:cAt<—>z:Axi2=c2t2
At _

l

Or measured in another moving Galilean frame R’:

!

r
c=—>r' =cAt' o Y Ax'? = c%t'?
At’ l
i




Einstein postulates

This invariant could be rewritten:
s=ZAx?—c2t2 =s'=0
i

(Galileo : s = Ax? + Ax3 + Ax3= Ax* + Ay* + Az*)

could be written in a general form:

4
s = Z:Ax% = Ax5 + Ax5 + Ax5 + Ax5=0
i=1
By identifying: x;1 = x; x, = y; X3 = z; x4 = ict
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