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Chapter 01: Galilean Referential and

Newton Relativity

▪ Galilean referential and transformations

▪ Invariance of the Newtonian dynamics

▪ Ether and light

▪ There is light in Maxwell’s equations !!!

▪ Electromagnetism and Newton relativity

▪ Michelson-Morley experiment

▪ Einstein postulates



Galilean referential and transformations

• Frame of reference :

It is a system coordinates: (O,X,Y,Z)

in which one can measure distances

and time. The used tape measure

and a watch are in rest within such

system, which is called “Frame of

reference”.
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Galilean referential and transformations

• Galilean frame (Inertial frame):

Galilean frame is a frame of reference in which any

material body undergoing a null resulting force, will move

with a constant speed and in straight line, elsewhere it

should be in rest.

In other words, in Galilean frame of reference the first

Newton law is given by:

෍

𝑖

Ԧ𝑓𝑖 = 0

In such frame of reference:

▪ The time is uniform (it flows everywhere with same
way)

▪ The space is homogeneous and isotropic
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Galilean referential and transformations

• Galilean frame (Inertial frame):

Any other frame of reference moving linearly with a constant velocity (u = 𝐶𝑡𝑒) with

respect to another inertial frame (par exemple suivant OX ), is considered also as

inertial frame of reference.

𝑷(𝒙, 𝒚, 𝒛, 𝒕) ≡ 𝑷(𝒙′, 𝒚′, 𝒛′, 𝒕′)
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Galilean referential and transformations

• Galilean transformations:

Both observers O and O’, related to frames of reference R and R’, respectively, will measure the position of the

point P simultaneously as a function of the coordinates of each frame. This is done through time flowing

similarly in both systems.

Even the fact that both measures are shifted in time, this shift is always linear (𝑡′ = 𝑡 + 𝑡0 → ∆𝑡′ = ∆𝑡).

𝑷(𝒙, 𝒚, 𝒛, 𝒕) ≡ 𝑷(𝒙′, 𝒚′, 𝒛′, 𝒕′)
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𝑶𝑶′ = 𝒖𝒕

𝑶𝑶′ = 𝒓 − 𝒓′



Galilean referential and transformations

• Galilean transformations:

We know that in each frame of reference, one can write for the same point 𝑃(𝑥, 𝑦, 𝑧) ≡ 𝑃(𝑥′, 𝑦′, 𝑧′):

Ԧ𝑟 = 𝑥Ԧ𝑖 + 𝑦Ԧ𝑗 + 𝑧𝑘

𝑟′ = 𝑥′𝑖′ + 𝑦′𝑗′ + 𝑧′𝑘′ ; with Ԧ𝑖 ≡ 𝑖′, Ԧ𝑗 ≡ 𝑗′, 𝑘 ≡ 𝑘′ (colinear unitary vectors)

𝒓 𝒓’

𝑶𝑶′ = 𝒖𝒕 = 𝒖𝒕Ԧ𝒊 = 𝒓 − 𝒓′

𝑢𝑡Ԧ𝑖 = 𝑥Ԧ𝑖 − 𝑥′𝑖′

𝑦Ԧ𝑗 = 𝑦′𝑗′

𝑧𝑘 = 𝑧′𝑘′

𝑡 = 𝑡′
 

𝑢𝑡 = 𝑥 − 𝑥′
𝑦 = 𝑦′ 

𝑧 = 𝑧′

𝑡 = 𝑡′
 

𝑥 = 𝑥′ + 𝑢𝑡′
𝑦 = 𝑦′ 

𝑧 = 𝑧′

𝑡 = 𝑡′
 

Galilean Transformations



Galilean referential and transformations

• Galilean transformations:

In the Galilean transformations, two principles are considered:

o The time 𝑡 is absolute (i.e. the same in each frame of reference)

o The distance 𝑙 = ∆𝑆 = 𝑙′ = ∆𝑆 is also absolute (even it is measured in R or R’, the distance is

invariant, as long as the principle of the simultaneity of the measurement is verified)

𝑥 = 𝑥′ + 0 × 𝑦′ + 0 × 𝑧′ + 𝑢𝑡′ 

𝑦 = 0 × 𝑥′ + 𝑦′ + 0 × 𝑧′ + 0 × 𝑡′

𝑧 = 0 × 𝑥′ + 0 × 𝑦′ + 𝑧′ + 0 × 𝑡′

𝑡 = 0 × 𝑥′ + 0 × 𝑦′ + 0 × 𝑧′ + 𝑡′
 

𝑥
𝑦
𝑧
𝑡

=

1 0
0 1

0 𝑢
0 0

0 0
0 0

1 0
0 1

𝑥′
𝑦′
𝑧′
𝑡′



Galilean referential and transformations

𝑥′ = 𝑥 + 0 × 𝑦 + 0 × 𝑧 − 𝑢𝑡 

𝑦′ = 0 × 𝑥 + 𝑦 + 0 × 𝑧 + 0 × 𝑡

𝑧′ = 0 × 𝑥 + 0 × 𝑦 + 𝑧 + 0 × 𝑡

𝑡′ = 0 × 𝑥 + 0 × 𝑦 + 0 × 𝑧 + 𝑡
 

𝑥′
𝑦′
𝑧′
𝑡′

=

1 0
0 1

0 −𝑢
0 0

0 0
0 0

1 0
0 1

𝑥
𝑦
𝑧
𝑡

• Galilean transformations:

In the Galilean transformations, two principles are considered:

o The time 𝑡 is absolute (i.e. the same in each frame of reference)

o The distance 𝑙 = ∆𝑆 = 𝑙′ = ∆𝑆 is also absolute (even it is measured in R or R’, the distance is

invariant, as long as the principle of the simultaneity of the measurement is verified)



Galilean referential and transformations

• Exercise :

By using the Galilean transformations, show that the distance between two points (𝑃1𝑃2) measured in the

frame R as:

𝑙 = 𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1

2 + 𝑧2 − 𝑧1
2

Has the same value as the distance between the same points when measured simultaneously in the frame R’

moving with respect to R with a constant velocity 𝑢 = 𝑢. Ԧ𝑖 (along the axis OX/O’X’):

𝑙′ = 𝑥′2 − 𝑥′1
2 + 𝑦′2 − 𝑦′1

2 + 𝑧′2 − 𝑧′1
2 𝒙 = 𝒙′ + 𝒖𝒕

𝒚 = 𝒚′ 

𝒛 = 𝒛′

𝒕 = 𝒕′
 



Galilean referential and transformations

• Exercise :

By using the Galilean transformations, show that the distance between two points (𝑃1𝑃2) measured in the

frame R as:

𝑙 = 𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1

2 + 𝑧2 − 𝑧1
2

Has the same value as the distance between the same points when measured simultaneously in the frame R’

moving with respect to R with a constant velocity 𝑢 = 𝑢. Ԧ𝑖 (along the axis OX/O’X’):

𝑙′ = 𝑥′2 − 𝑥′1
2 + 𝑦′2 − 𝑦′1

2 + 𝑧′2 − 𝑧′1
2

• Answer:

From: 𝒍′ = 𝒙′𝟐 − 𝒙′𝟏
𝟐 + 𝒚′𝟐 − 𝒚′𝟏

𝟐 + 𝒛′𝟐 − 𝒛′𝟏
𝟐, and using the Galilean transformations we get:

𝒍′ = 𝒙𝟐 − 𝒖𝒕 − 𝒙𝟏 − 𝒖𝒕
𝟐

+ 𝒚𝟐 − 𝒚𝟏
𝟐 + 𝒛𝟐 − 𝒛𝟏

𝟐 = 𝒙𝟐 − 𝒙𝟏
𝟐

+ 𝒚𝟐 − 𝒚𝟏
𝟐 + 𝒛𝟐 − 𝒛𝟏

𝟐 = 𝒍

𝒙 = 𝒙′ + 𝒖𝒕
𝒚 = 𝒚′ 

𝒛 = 𝒛′

𝒕 = 𝒕′
 



Galilean referential and transformations

• Galilean transformations:

The matrix writing implies that each variable in a given frame, is a function of the other variables defined in

the other Galilean frame and vice-versa. This implies that the partial derivation could be written as:

𝜕

𝜕𝑥′𝑖
= ෍

𝑗

𝜕𝑥𝑗

𝜕𝑥′𝑖

𝜕

𝜕𝑥𝑗

Therefore, when we pass from a given frame (S) to another one (S’), we find:

𝜕

𝜕𝑥′
=

𝜕

𝜕𝑥
;

𝜕

𝜕𝑦′
=

𝜕

𝜕𝑦
;

𝜕

𝜕𝑧′
=

𝜕

𝜕𝑧
→ ∇′ = ∇

𝜕

𝜕𝑡′
=

𝜕

𝜕𝑡
+ 𝑢. ∇

𝒙 = 𝒙′ + 𝒖𝒕
𝒚 = 𝒚′ 

𝒛 = 𝒛′

𝒕 = 𝒕′
 



Invariance of Newton’s mechanics

1. The velocity addition law:

From the Galilean transformations and performing time-derivation of each term (
𝑑

𝑑𝑡
):

𝑑

𝑑𝑡

𝑥 = 𝑥′ + 𝑢𝑡
𝑦 = 𝑦′

𝑧 = 𝑧′

𝑡 = 𝑡′

→

𝑑𝑥

𝑑𝑡
=

𝑑𝑥′

𝑑𝑡′
+ 𝑢

𝑑𝑡

𝑑𝑡′
𝑑𝑦

𝑑𝑡
=

𝑑𝑦′

𝑑𝑡′
𝑑𝑧
𝑑𝑡

=
𝑑𝑧′
𝑑𝑡′

𝑑𝑡′ = 𝑑𝑡

→ ൞

𝑣𝑥 = 𝑣′𝑥 + 𝑢

𝑣𝑦 = 𝑣′𝑦

𝑣𝑧 = 𝑣′𝑧

→ Ԧ𝑣 /𝑅 = 𝑣′
/𝑅′

+ 𝑢 /𝑅

Thus, we obtain here the velocity addition (composition) law between inertial frames



Invariance of Newton’s mechanics

2. Invariance of the linear acceleration:

By deriving again to obtain the acceleration in both R and R’:

𝑑

𝑑𝑡
൞

𝑣𝑥 = 𝑣′𝑥 + 𝑢

𝑣𝑦 = 𝑣′𝑦

𝑣𝑧 = 𝑣′𝑧

→

𝑑𝑣𝑥

𝑑𝑡
=

𝑑𝑣′𝑥

𝑑𝑡
+

ด

𝑑𝑢

𝑑𝑡
=0

𝑑𝑣𝑦

𝑑𝑡
=

𝑑𝑣′𝑦

𝑑𝑡
𝑑𝑣𝑧

𝑑𝑡
=

𝑑𝑣′𝑧

𝑑𝑡

൞

𝑎𝑥 = 𝑎′𝑥

𝑎𝑦 = 𝑎′𝑦

𝑎𝑧 = 𝑎′𝑧

Ԧ𝑎 /𝑅 = 𝑎′
/𝑅′

The acceleration is invariant in both inertial frames. Its measure is identical for each

observer being in an inertial frame of reference. (In rest or constant uniform motion)



Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

Usually, the mass of a solid body is denoted « m », and it is considered as a constant

everywhere, no matter the inertial frame considered to measure it.

By using the previous results of the invariance of the acceleration, it follows that the quantity

𝑚 Ԧ𝑎 is also an invariant of an inertial frame.

In fact, this quantity is the definition of the resultant of the applied forces on a body of a mass

“m”, as given by the second law of the Newtonian dynamics:

෍

𝒊

𝒇𝒊 = 𝑭 = 𝒎𝒂

/𝑹

= ෍

𝒊

𝒇′𝒊 = 𝑭′ = 𝒎𝒂′

/𝑹′



Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

What about the momentum (impulsion) measured within the frame R: 𝑷 = 𝒎𝒗 ?

It is clair that when measured in R’ (moving/R), the momentum of same body is not the same: 𝑃′ = 𝑚𝑣′ =

𝑚 Ԧ𝑣 − 𝑢

However, the total momentum of two-body system (𝑚1 et 𝑚2), before and after their interaction :

𝑅 : ෍

𝑎𝑣𝑎𝑛𝑡

𝑃 = ෍

𝑎𝑝𝑟è𝑠

𝑃 → 𝑃1 + 𝑃2 = 𝑃3 + 𝑃4 𝑚1𝑣1 + 𝑚2𝑣2 = 𝑚1𝑣3 + 𝑚2𝑣4

𝑅′ : ෍

𝑎𝑣𝑎𝑛𝑡

𝑃′ = ෍

𝑎𝑝𝑟è𝑠

𝑃′ → 𝑃′1 + 𝑃′2 = 𝑃′3 + 𝑃′4 𝑚1𝑣′1 + 𝑚2𝑣′2 = 𝑚1𝑣′3 + 𝑚2𝑣′4

Considering that any velocity 𝑣′ in (R’) is written as a function of Ԧ𝑣 in (R ), as well as: 𝑣′𝑖 = 𝑣𝑖 − 𝑢



Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

What about the momentum (impulsion) measured within the frame R: 𝑃 ⃗=𝑚𝑣 ⃗ ?

By replacing in the conservation equation of momentum given in (R’):

𝑅′ : 𝑚1𝑣′1 + 𝑚2𝑣′2 = 𝑚1𝑣′3 + 𝑚2𝑣′4 𝑚1 𝑣1 − 𝒖 + 𝑚2 𝑣2 − 𝒖 = 𝑚1 𝑣3 − 𝒖 + 𝑚2 𝑣4 − 𝒖

We obtain the same equation written in (R ):

𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣3 + 𝑚2 𝑣4

The principle of the momentum conservation of a given system is always verified in

inertial frames of reference (in rest or in uniform motion).



Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

What about the total energy measured in the frame R: 𝑬𝒕𝒐𝒕 = 𝑻 + 𝑼 ? 𝑻 =
𝟏

𝟐
𝒎𝒗𝟐

Let’s consider two corpuscles entering in an interaction, where the potential energy of this interaction is a

function of the distance separating these two particles 𝑈12 = 𝑈(𝑟12) . We can write in this case, the

conservation of de 𝐸𝑡𝑜𝑡 in both R and R’:

𝑅 : 𝑇1 + 𝑇2 + 𝑈12 = 𝑇3 + 𝑇4 + 𝑈34

1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 + 𝑈12 =
1

2
𝑚1𝑣3

2 +
1

2
𝑚2𝑣4

2 + 𝑈34

𝑅′ : 𝑇′1 + 𝑇′2 + 𝑈′12 = 𝑇′3 + 𝑇′4 + 𝑈′34

1

2
𝑚1𝑣′1

2 +
1

2
𝑚2𝑣′2

2 + 𝑈′12 =
1

2
𝑚1𝑣′3

2 +
1

2
𝑚2𝑣′4

2 + 𝑈′34



Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

What about the total energy measured in the frame R: 𝑬𝒕𝒐𝒕 = 𝑻 + 𝑼 ? 𝑻 =
𝟏

𝟐
𝒎𝒗𝟐

By using the fact that:

• 𝑣′𝑖 = 𝑣𝑖 − 𝑢

• 𝑈12 = 𝑈 𝑟12 & 𝑟12 = 𝑟′
12 → 𝑈 𝑟′

12 = 𝑈 𝑟12 → 𝑈′
12 = 𝑈12

We obtain through a simple mathematical calculus that the energy conservation in R’ turns to be:

𝑅′ :
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 + 𝑈12 + 𝑚1𝑣1 + 𝑚2𝑣2 . 𝑢 =
1

2
𝑚1𝑣3

2 +
1

2
𝑚2𝑣4

2 + 𝑈34 + 𝑚1𝑣1 + 𝑚2𝑣2 . 𝑢



Invariance of Newton’s mechanics

3. Invariance of the Newtonian dynamics:

What about the total energy measured in the frame R: 𝑬𝒕𝒐𝒕 = 𝑻 + 𝑼 ? 𝑻 =
𝟏

𝟐
𝒎𝒗𝟐

𝑅′ (𝑅):
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 + 𝑈12 =
1

2
𝑚1𝑣3

2 +
1

2
𝑚2𝑣4

2 + 𝑈34

This result indicates that the conservation of the total energy of an isolated system in a given inertial frame (R),

implies the conservation of the same quantity in another inertial frame (R’) moving with a constant velocity with

respect of the first frame (R).

The total energy conservation principle of a given system is always verified,

whatever the used inertial frame!!!



Invariance of Newton’s mechanics

➢ The laws of mechanics (classical or Newtonian) are invariant by Galilean

transformations: they are always formulated in the same way, whatever the inertial

frame in which we express them

➢ The mathematical formulation is preserved when passing from a Galilean frame to

another. There is no preferred frame of reference to formulate the (classical) laws of

physics.

➢ The Galilean frames are all equivalent to describe any given physical event or

phenomenon obeying Newton laws. The choice is only dictated by the observer.



Ether and light

• Luminiferous Ether ( الضوئيالأثير ):

After the establishment of the sound theory and its

propagation during 17th and 18th centuries, it follows

that material medium (solid or fluid) is necessary to

allow the sound propagation. Therefore physicists

borrow the same concept to propose a kind of a

necessary medium to the propagation of light. It is

called Luminiferous Ether (Luminiferous Aether).

C. Huygens

(1629-1695, NL)

A. Fresnel

(1788-1827, FR)

Huygens-Fresnel principle or the 

wave theory of light



• Luminiferous Ether:

Indeed, the light obey to wave equation, with 𝑓
as the wave function:

∆𝒇 −
𝟏

𝒗𝟐

𝝏𝟐𝒇

𝝏𝒕𝟐 = 𝒇 = 𝟎 ( = ∆ −
1

𝑣2

𝜕2

𝜕𝑡2)

Besides that, using the wave theory it is

possible de explain some phenomena observed

with light beams:

- Diffraction

- Interference

C. Huygens

(1629-1695, NL)

A. Fresnel

(1788-1827, FR)

Huygens-Fresnel principle or the 

wave theory of light

Ether and light



Ether and light

First measurements of light celerity:

• J. Bradely in 1729 (𝒄 = 𝟑. 𝟎𝟏 × 𝟏𝟎𝟖 𝒎/𝒔),

• H. Fizeau in 1849 (𝒄 = 𝟑. 𝟏𝟓 × 𝟏𝟎𝟖𝒎/𝒔),

• L. Foucault in 1862 (𝒄 = 𝟐. 𝟗𝟖 × 𝟏𝟎𝟖 𝒎/𝒔)

• Light velocity:

According to this theory, the

ether constitute an absolute

frame for the light wave

propagating with a constant

celerity 𝑐 = 299792458 𝑚/𝑠.



Ether and light

▪ It should be elastic to vibrate sufficiently in such a way the light will propagate as a

wave

▪ It should have almost null resistance to allow material objects to move freely with

respect to it without the slightest friction

Unfortunately, this medium

should gather at the same time

paradoxical properties:

▪ It should have an infinite

rigidity to allow light to travel

over important distances with

a constant celerity



Ether and light



There is light in Maxwell’s equations !!!

• Electromagnetism before Maxwell:

J.C. Maxwell

(1831-1879, UK)

(1) 𝜵. 𝑬 =
𝝆

𝜺𝟎
The Gauss law

(2) 𝜵 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
The Faraday law

(3) 𝜵. 𝑩 = 𝟎 The Gauss law of magnetism

(4) 𝜵 ∧ 𝑩 = 𝝁𝟎
Ԧ𝑱 The Ampere law

With the continuity equation:  
𝝏𝝆 𝒕

𝝏𝒕
+ 𝜵. Ԧ𝑱 = 𝟎



There is light in Maxwell’s equations !!!

J.C. Maxwell

(1831-1879, UK)

As we know that for any vector Ԧ𝐴: 𝛁 . 𝛁 ∧ Ԧ𝐴 = 0

Left-hand term of (2): 𝛁 . 𝛁 ∧ 𝐸 = 0

Right-hand term of (2):

𝛁 . −
𝝏𝑩

𝝏𝒕
= −

𝝏

𝝏𝒕
𝛁 . 𝑩 = 0; 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝛁 . 𝑩=0  (3rd equation)

Left-hand term of (4): 𝛁 . 𝛁 ∧ 𝐵 = 0

Right-hand term of (4): 

𝛁 . 𝝁𝟎
Ԧ𝑱 = 𝝁𝟎 𝛁 . Ԧ𝑱 ฎ=

?

0 Not always true !!!

(1) 𝜵. 𝑬 =
𝝆

𝜺𝟎

(2) 𝜵 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕

(3) 𝜵. 𝑩 = 𝟎

(4) 𝜵 ∧ 𝑩 = 𝝁𝟎
Ԧ𝑱

• Electromagnetism before Maxwell:



There is light in Maxwell’s equations !!!

• The Maxwell’s equations:

J.C. Maxwell

(1831-1879, UK)

Maxwell introduced the displacement current: 𝑫 = 𝜺𝟎
𝝏𝑬

𝝏𝒕

Such as: Ԧ𝑱 → Ԧ𝑱 + 𝑫, thus the 4th Eq. becomes:

𝜵 ∧ 𝑩 = 𝝁𝟎
Ԧ𝑱 + 𝑫 = 𝝁𝟎

Ԧ𝑱 + 𝝁𝟎𝜺𝟎

𝝏𝑬

𝝏𝒕

Now, let’s recalculate and verify 𝛁 . 𝛁 ∧ 𝐵 = 0 :

𝜵. Ԧ𝑱 + 𝑫  = 𝜵. Ԧ𝑱 + 𝜵. 𝑫 = −
𝝏𝝆

𝝏𝒕
+ 𝜵.

𝜺𝟎𝝏𝑬

𝝏𝒕
= −

𝝏𝝆

𝝏𝒕
+

𝜺𝟎𝝏

𝝏𝒕
𝜵. 𝑬

𝝆

𝜺𝟎

Thus, we could verify always that: 𝛁 . 𝛁 ∧ 𝐵 = 0; ∀ Ԧ𝑱

« This is the Maxwell correction »



There is light in Maxwell’s equations !!!

J.C. Maxwell

(1831-1879, UK)

(1) 𝜵. 𝑬 =
𝝆

𝜺𝟎
Maxwell-Gauss law

(2) 𝜵 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
Maxwell-Faraday law

(3) 𝜵. 𝑩 = 𝟎 Magnetism Maxwell-Gauss

(4) 𝜵 ∧ 𝑩 = 𝝁𝟎
Ԧ𝑱 + 𝝁𝟎𝜺𝟎

𝝏𝑬

𝝏𝒕
Maxwell-Ampere law

The present-day vector

edition of Maxwell’s

equations, were elaborated

by the physicist O.

Heaviside in 1884.

• The Maxwell’s equations (1685):



There is light in Maxwell’s equations !!!

J.C. Maxwell

(1831-1879, UK)

(1) 𝜵. 𝑬 =
𝝆

𝜺𝟎
      (2) 𝜵 ∧ 𝑬 +

𝝏𝑩

𝝏𝒕
= 𝟎  

(3) 𝜵. 𝑩 = 𝟎        (4) 𝜵 ∧ 𝑩 − 𝝁𝟎𝜺𝟎
𝝏𝑬

𝝏𝒕
= 𝝁𝟎

Ԧ𝑱

« The Maxwell’s equations inform us how electrical charges

produce fields, and reciprocally the E.M force law, inform us

how fields affect electrical charges»

With the continuity equation: 
𝝏𝝆 𝒕

𝝏𝒕
+ 𝜵. Ԧ𝑱 = 𝟎

• The Maxwell’s equations:



There is light in Maxwell’s equations !!!

J.C. Maxwell

(1831-1879, UK)

(1) 𝜵. 𝑬 = 𝟎      (2) 𝜵 ∧ 𝑬 +
𝝏𝑩

𝝏𝒕
= 𝟎  

(3) 𝜵. 𝑩 = 𝟎       (4) 𝜵 ∧ 𝑩 − 𝝁𝟎𝜺𝟎
𝝏𝑬

𝝏𝒕
= 𝟎

Exercise : (test: 20min)

If we know that for any vector 𝑨, we have always:

𝜵 ∧ 𝜵 ∧ 𝑨 = 𝜵 𝜵. 𝑨 − ∆𝑨

Calculate then: 𝜵 ∧ 𝜵 ∧ 𝑬 et 𝜵 ∧ 𝜵 ∧ 𝑩

• The Maxwell’s equations (free space 𝝆 = 𝟎, 𝑱 = 𝟎):



There is light in Maxwell’s equations !!!

J.C. Maxwell

(1831-1879, UK)

(1) 𝜵. 𝑬 = 𝟎      

(2) 𝜵 ∧ 𝑬 +
𝝏𝑩

𝝏𝒕
= 𝟎  

(3) 𝜵. 𝑩 = 𝟎       

(3) 𝜵 ∧ 𝑩 − 𝝁𝟎𝜺𝟎
𝝏𝑬

𝝏𝒕
= 𝟎

Answer:  

𝜵 ∧ 𝜵 ∧ 𝑬 = 𝜵 𝜵. 𝑬 − ∆𝑬 𝜵 ∧ −
𝜕𝐵

𝜕𝑡
= 𝜵 0 − ∆𝑬

−
𝝏

𝝏𝒕
𝜵 ∧ 𝐵 = −

𝝏

𝝏𝒕
𝜇0𝜀0

𝜕𝐸

𝜕𝑡
= −∆𝑬

∆𝑬 − 𝜇0𝜀0

𝝏𝟐𝐸

𝝏𝒕𝟐
= ∆𝑬 − 𝜇0𝜀0

𝝏𝟐𝐸

𝝏𝒕𝟐
= 𝟎

• The Maxwell’s equations (free space 𝝆 = 𝟎, 𝑱 = 𝟎):

Exercise : (test: 20min)

If we know that for any vector 𝑨, we have always:

𝜵 ∧ 𝜵 ∧ 𝑨 = 𝜵 𝜵. 𝑨 − ∆𝑨

Calculate then: 𝜵 ∧ 𝜵 ∧ 𝑬 et 𝜵 ∧ 𝜵 ∧ 𝑩



There is light in Maxwell’s equations !!!

J.C. Maxwell

(1831-1879, UK)

(1) 𝜵. 𝑬 = 𝟎      

(2) 𝜵 ∧ 𝑬 +
𝝏𝑩

𝝏𝒕
= 𝟎  

(3) 𝜵. 𝑩 = 𝟎       

(3) 𝜵 ∧ 𝑩 − 𝝁𝟎𝜺𝟎
𝝏𝑬

𝝏𝒕
= 𝟎

Answer :  

𝜵 ∧ 𝜵 ∧ 𝑩 = 𝜵 𝜵. 𝑩 − ∆𝑩 𝜵 ∧ 𝜇0𝜀0
𝜕𝐸

𝜕𝑡
= 𝜵 𝟎 − ∆𝑩

𝜇0𝜀0𝜵 ∧
𝜕𝐸

𝜕𝑡
= −∆𝑩 𝜇0𝜀0

𝝏

𝝏𝒕
𝜵 ∧ 𝐸 = −∆𝑩

∆𝑩 + 𝜇0𝜀0

𝝏

𝝏𝒕
−

𝜕𝐵

𝜕𝑡
= ∆𝑩 − 𝜇0𝜀0

𝝏𝟐𝐵

𝝏𝒕𝟐
= 0

• The Maxwell’s equations (free space 𝝆 = 𝟎, 𝑱 = 𝟎):

Exercise : (test: 20min)

If we know that for any vector 𝑨, we have always:

𝜵 ∧ 𝜵 ∧ 𝑨 = 𝜵 𝜵. 𝑨 − ∆𝑨

Calculate then: 𝜵 ∧ 𝜵 ∧ 𝑬 et 𝜵 ∧ 𝜵 ∧ 𝑩



• Luminiferous Ether:

Indeed, the light obey to wave equation, with 𝑓
as the wave function:

∆𝒇 −
𝟏

𝒗𝟐

𝝏𝟐𝒇

𝝏𝒕𝟐 = 𝒇 = 𝟎 ( = ∆ −
1

𝑣2

𝜕2

𝜕𝑡2)

Besides that, using the wave theory it is

possible de explain some phenomena observed

with light beams:

- Diffraction

- Interference

C. Huygens

(1629-1695, NL)

A. Fresnel

(1788-1827, FR)

Huygens-Fresnel principle or the 

wave theory of light

Ether and light



There is light in Maxwell’s equations !!!

J.C. Maxwell

(1831-1879, UK)

Exercise: 

We have: 

ε0 = 8.854 187 8128 × 10−12 C2. N−1. m−2 ; μ0 = 4π × 10−7[N. A−2]

1. Calculate the product: μ0ε0 and deduce 
1

μ0ε0
.

2. In terms of physical units, what does represent this quantity?

3. Show that, for material medium (not a free space) where 𝜀 = 𝜀0𝜀𝑟 = 𝜀0 1 + 𝜒𝑒

and 𝜇 = 𝜇0𝜇𝑟 = 𝜇0 1 + 𝜒𝑚 , that 
1

𝜇𝜀
is always lower than a given superior limit 

to define.

We have: 𝜒𝑒 > 0 et 𝜒𝑚 > 0

• The Maxwell’s equations (free space 𝝆 = 𝟎, 𝑱 = 𝟎):



There is light in Maxwell’s equations !!!

J.C. Maxwell

(1831-1879, UK)

Answer: 

(1) 𝜀0𝜇0 = 8.854 187 8128 × 10−8 × 4𝜋 × 10−7 = 111.2650055 × 10−19 𝐶2

𝐴2.𝑚2

𝜀0𝜇0 = 111.2650055 × 10−19 𝑠2. 𝑚−2 →
1

𝜀0𝜇0
= 299792458 [

𝑚

𝑠
]

(2) According to the unity
𝑚

𝑠
, this quantity represents a velocity. This velocity is the light 

celerity in free space: 
1

𝜀0𝜇0
= 𝑐

3/ since : 𝜒𝑒 > 0 et 𝜒𝑚 > 0, then : 𝜒𝑒 + 1 > 1 et 𝜒𝑚 + 1 > 1 :

𝜒𝑒 + 1 𝜒𝑚 + 1 > 1; this implies that:

𝜀𝜇 = 𝜀0𝜇0 𝜒𝑒 + 1 𝜒𝑚 + 1 > 𝜀0𝜇0 → 𝜀0𝜇0 𝜒𝑒 + 1 𝜒𝑚 + 1 > 𝜀0𝜇0 →
1

𝜀𝜇
<

1

𝜀0𝜇0

• The Maxwell’s equations (free space 𝝆 = 𝟎, 𝑱 = 𝟎):



There is light in Maxwell’s equations !!!

J.C. Maxwell

(1831-1879, UK)

ด∆𝑬
𝑽𝒂𝒓.𝑺𝒑𝒂𝒕.

− 𝜇0𝜀0

𝝏𝟐𝐸

𝝏𝒕𝟐

𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏

= ∆𝑬 −
𝟏

𝒄𝟐

𝝏𝟐𝐸

𝝏𝒕𝟐
= 𝟎

ด∆𝑩
𝑽𝒂𝒓.𝑺𝒑𝒂𝒕.

− 𝜇0𝜀0

𝝏𝟐𝐵

𝝏𝒕𝟐

𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏

= ∆𝑩 −
𝟏

𝒄𝟐

𝝏𝟐𝐵

𝝏𝒕𝟐
= 𝟎

Therefore, in a free space and in absence of charges and currents, the

Maxwell’s equations show that electrical and magnetic fields

propagate as a wave with a constant velocity 𝑣 = 𝑐:
1

𝑣2 =
1

𝑐2 = 𝜇0𝜀0 → 𝑐 =
1

𝜇0𝜀0

• The Maxwell’s equations (free space 𝝆 = 𝟎, 𝑱 = 𝟎):



EM and Newton relativity

Maxwell’s equations under Galilean transformations:

▪ The invariance of distance under Galilean transformations implies the invariance of volume. This signifies

that the measured density of electrical charge in a fixed frame (R) is the same as measured in another

moving frame (R’) with constant velocity with respect to (R) :

𝜌′ = 𝜌

▪ In other hand, for charges moving with a velocity Ԧ𝑣 in a frame (S), the current density could be written:

Ԧ𝐽 = 𝜌. Ԧ𝑣

Then, in a moving inertial frame (R’), this current density is given by:

𝑱′ = 𝝆. 𝒗′ = 𝝆 𝒗 − 𝒖 = Ԧ𝑱 − 𝝆𝒖

We could easily verify that: ∇′. 𝐽′ +
𝜕𝜌′

𝜕𝑡′
= ∇. Ԧ𝐽 +

𝜕𝜌

𝜕𝑡
= 0



EM and Newton relativity

Maxwell’s equations under Galilean
transformations:

To find how the expressions of E.M fields will

behave under the Galilean transformations, we

will consider the linear and uniform movement

(𝑢 = 𝐶𝑡𝑒) of a charged particle (𝑒− or 𝑝 for

example) in an inertial frame (R) where an EM

field is present, defined by the orthogonal doublet

𝐸, 𝐵 as shown in the opposite figure. X

Y

Z

O

𝑩
𝑬

𝒗



EM and Newton relativity

Maxwell’s equations under Galilean
transformations:

▪ This charged particle will feel an E.M force acting on

it, which is given in the frame (R) by :

𝑭 = 𝒒 𝑬 + 𝒖 ⋏ 𝑩

▪ If we consider now another moving inertial frame

(R’) related to the particle, in a way we get: 𝑣′ = 𝑢 −

𝑢 = 0, then the EM force could be seen in (R’) as:

𝑭′ = 𝒒 𝑬′ + 𝟎 ⋏ 𝑩 = 𝒒𝑬′
X

Y

Z

O

𝑩
𝑬

𝒖

𝑭



EM and Newton relativity

Maxwell’s equations under Galilean
transformations:

▪ Therefore, the invariance of the Newton second law

in an inertial frame implies that:

Ԧ𝐹 = 𝐹′ → 𝑞 𝐸 + 𝑢 ⋏ 𝐵 = 𝑞𝐸′

Which leads to: 𝐸′ = 𝐸 + 𝑢 ⋏ 𝐵

▪ With the fact that 𝐵 is normal to the movement

direction of (R’) with respect to (R), it will be

measured with the same value in both frames:

𝐵′ = 𝐵

X

Y

Z

O

𝑩
𝑬

𝒖

𝑭



EM and Newton relativity

Maxwell’s equations under Galilean transformations:

▪ Now, lets rewrite the Maxwell’s equations in the new frame (R’), since we know that in

(R) we have:

(1) 𝜵. 𝑬 =
𝝆

𝜺𝟎
(2) 𝜵 ∧ 𝑬 +

𝝏𝑩

𝝏𝒕
= 𝟎 in addition of the continuity equation:

𝝏𝝆 𝒕

𝝏𝒕
+ 𝜵. Ԧ𝑱 = 𝟎

(3) 𝜵. 𝑩 = 𝟎 (4) 𝜵 ∧ 𝑩 −
𝟏

𝒄𝟐

𝝏𝑬

𝝏𝒕
= 𝝁𝟎

Ԧ𝑱

Let’s verify if these equations are invariant under Galilean transformations (𝜌′ = 𝜌, 𝐽′ = 0):

(1) 𝜵′. 𝑬′ =
𝝆

𝜺𝟎
(2) 𝜵′ ∧ 𝑬′ +

𝝏𝑩′

𝝏𝒕′
= 𝟎

(3) 𝜵′. 𝑩′ = 𝟎 (4) 𝜵′ ∧ 𝑩′ −
𝟏

𝒄𝟐

𝝏𝑬′

𝝏𝒕′
= 𝝁𝟎

Ԧ𝑱′



EM and Newton relativity

Maxwell’s equations under Galilean transformations:

▪ By replacing with: 𝐸′ = 𝐸 + 𝑢 ⋏ 𝐵 and 𝐵′ = 𝐵, and by using: ∇′ = ∇,
𝜕

𝜕𝑡′
=

𝜕

𝜕𝑡
+ 𝑢. ∇, we get for the 1st

equation:

𝜵. 𝑬 + 𝑢 ⋏ 𝐵 =
𝝆

𝜺𝟎
→ 𝜵. 𝑬 + 𝜵. Ԧ𝑢 ⋏ Ԧ𝐵 = ต𝜵. 𝑬

𝝆
𝜺𝟎

+ Ԧ𝐵. 𝜵 ⋏ Ԧ𝑢
=𝟎

− Ԧ𝑢 𝜵 ⋏ Ԧ𝐵 =
𝝆

𝜺𝟎

−
1

𝑐2
Ԧ𝑢.

𝝏𝑬

𝝏𝒕
=

𝝆

𝜺𝟎

▪ By considering the vector identity: 𝜵 ∧ Ԧ𝐴 ⋏ 𝐵 = Ԧ𝐴 𝜵. 𝐵 − 𝐵 𝜵. Ԧ𝐴 + 𝑩. 𝜵 𝑨 − (𝑨. 𝜵)𝑩, the 2nd equation

will verify the same one as in (R) :

𝜵 ∧ 𝑬 + 𝑢 ⋏ 𝐵 +
𝝏𝑩

𝝏𝒕′
= 𝜵 ∧ 𝑬 +

𝝏𝑩

𝝏𝒕
=𝟎

+ 𝜵 ∧ 𝑢 ⋏ 𝐵 + 𝒖. 𝜵 𝑩

=𝟎

= 𝟎



EM and Newton relativity

Maxwell’s equations under Galilean transformations:

By replacing with: 𝐸′ = 𝐸 + 𝑢 ⋏ 𝐵 and 𝐵′ = 𝐵, and by using: ∇′ = ∇,
𝜕

𝜕𝑡′
=

𝜕

𝜕𝑡
+ 𝑢. ∇, we get for the 3rd

equation:

𝜵′. 𝑩′ = 𝜵. 𝑩 = 𝟎

And for the 4th equation, we have:

𝜵 ∧ 𝑩 −
𝟏

𝒄𝟐

𝝏 𝑬 + 𝑢 ⋏ 𝐵

𝝏𝒕′
= 𝜵 ∧ 𝑩 −

𝟏

𝒄𝟐

𝝏𝑬

𝝏𝒕
𝝁𝟎Ԧ𝑱

−
𝟏

𝒄𝟐
𝑢. ∇ 𝑬 −

𝟏

𝒄𝟐

𝝏

𝝏𝒕
𝑢 ⋏ 𝐵 −

𝟏

𝒄𝟐
𝑢. ∇ 𝑢 ⋏ 𝐵 = 0

The Galilean transformation did not preserve the 
Maxwell’s equations !!!



EM and Newton relativity

Maxwell’s equations under Galilean transformations:

In the same way, we could get similar results for the wave equation of E.M fields when we try to write it in a

moving inertial frame (R’), where we get non-invariant equation under Galilean transformations:

(S): ∆𝑬 −
𝟏

𝒄𝟐

𝝏𝟐𝐸

𝝏𝒕𝟐 = 𝟎 et ∆𝑩 −
𝟏

𝒄𝟐

𝝏𝟐𝐵

𝝏𝒕𝟐 = 𝟎

(S’): ∆𝑬 −
𝟏

𝒄𝟐

𝝏𝟐𝐸

𝝏𝒕′𝟐 +
𝟏

𝒄𝟐 𝟐𝒖
𝝏𝟐𝐸

𝝏𝒙′𝝏𝒕′
− 𝒖𝟐 𝝏𝟐𝐸

𝝏𝒙′𝟐 = 𝟎 et ∆𝑩 −
𝟏

𝒄𝟐

𝝏𝟐𝐵

𝝏𝒕′𝟐 +
𝟏

𝒄𝟐 𝟐𝒖
𝝏𝟐𝐵

𝝏𝒙′𝝏𝒕′
− 𝒖𝟐 𝝏𝟐𝐵

𝝏𝒙′𝟐 = 𝟎

The Galilean transformation did not preserve the 
Maxwell’s equations !!!



Michelson-Morley experiment (1887)A. A. Michelson

(1852-1931, US)

E. W. Morley

(1838-1923, US)
 = 𝒄. 𝑻

The Michelson-Morley experiment is based on the wave nature of Light

and superposition principle of waves:



Michelson-Morley experiment (1887)A. A. Michelson

(1852-1931, US)

E. W. Morley

(1838-1923, US)

We could obtain,

constructive interferences

( ∆𝒙 = 𝒏 ), and destructive

interferences (∆𝒙 =
𝟐𝒏+𝟏

𝟐
)

∆𝒙 = 𝒏

∆𝒙 =
𝟐𝒏 + 𝟏

𝟐




Michelson-Morley experiment (1887)A. A. Michelson

(1852-1931, US)

E. W. Morley

(1838-1923, US)



Michelson-Morley experiment (1887)A. A. Michelson

(1852-1931, US)

E. W. Morley

(1838-1923, US)

𝒗 = 𝟑𝟎𝒌𝒎/𝒔

Orbital movement of Earth around the Sun, or in other 

words with respect to Ether



Michelson-Morley experiment (1887)A. A. Michelson

(1852-1931, US)

E. W. Morley

(1838-1923, US)

∆𝑵 =
𝒍𝑨 + 𝒍𝑩 𝒗𝟐

𝒄𝟐
≅ 𝟎. 𝟒 𝒇𝒓𝒊𝒏𝒈𝒆𝒔

 = 𝟓𝟗𝟎𝟎Å; 𝒗 = 𝟑𝟎𝒌𝒎/𝒔
𝒍𝑨 = 𝒍𝑩 = 𝟏𝟏𝒎

v



Michelson-Morley experiment (1887)

A. A. Michelson

(1852-1931, US)

E. W. Morley

(1838-1923, US)

∆𝑵𝒕𝒉≅ 𝟎. 𝟒 𝒇𝒓𝒊𝒏𝒈𝒆𝒔

∆𝑵𝒆𝒙𝒑< 𝟎. 𝟎𝟏 𝒇𝒓𝒊𝒏𝒈𝒆𝒔

A. A. Michelson

(1852-1931, US)

Negative experiment: failure

to verify the existence of

Luminiferous Ether



In his reasoning, A. Einstein relies on the

principle of relativity which stipulates that in

Galilean frames, all laws of physics are

equivalent (they should be expressed in the

same way), whatever the observer and the

used frame to describe the physical event.

Einstein postulates



▪ For A. Einstein, the Maxwell’s equations are an

example of physical laws respecting this principle,

since they proved themselves !!!

▪ However, they should not change under Galilean

transformations when we pass from inertial frame to

another;

▪ Thus, the concept of luminiferous ether is not really

necessary to describe the light propagation (even for

the rest of physical phenomena).

Einstein postulates



▪ The fact that, the Galilean transformations do not

preserve the invariance of Maxwell’s equations,

necessary implies to reconsider its two fundamental

principles: absolute time and absolute distance.

▪ Indeed, according to A. Einstein, the Lorentz

transformations are the most convenient and suitable

tools to describe physical laws within inertial frames,

especially when velocities become significant in front

of light velocity 𝒄.

Einstein postulates



Postulate 1: The physical laws are all the same

(invariant) in all inertial frames (non accelerated frames).

Postulate 2: The light celerity in free space :

𝒄 =
𝟏

𝛍𝟎𝛆𝟎
= 𝟐𝟗𝟗𝟕𝟗𝟐𝟒𝟓𝟖 𝒎/𝒔

Is an universal constant and did not depend on the

movement of the source.

Einstein postulates



Thus, A. Einstein advances a new invariant on the basis

of the light celerity constancy, measured in Galilean

frame R:

𝒄 =
𝒓

∆𝒕
→ 𝒓 = 𝒄∆𝒕 ෍

𝒊

∆𝒙𝒊
𝟐 = 𝒄𝟐𝒕𝟐

Or measured in another moving Galilean frame R’:

𝒄 =
𝒓′

∆𝒕′
→ 𝒓′ = 𝒄∆𝒕′ ෍

𝒊

∆𝒙′𝒊
𝟐 = 𝒄𝟐𝒕′𝟐

Einstein postulates



This invariant could be rewritten:

𝒔 = ෍

𝒊

∆𝒙𝒊
𝟐 − 𝒄𝟐𝒕𝟐 = 𝒔′ = 𝟎

(Galileo : 𝒔 = ∆𝒙𝟏
𝟐 + ∆𝒙𝟐

𝟐 + ∆𝒙𝟑
𝟐= ∆𝒙𝟐 + ∆𝒚𝟐 + ∆𝒛𝟐 )

By introducing the “time-light” dimension: 𝒍 = 𝒄𝒕 , and
defining an imaginary coordinate 𝒙𝟒 = 𝒊𝒍, the invariant 𝒔
could be written in a general form:

𝒔 = ෍

𝒊=𝟏

𝟒

∆𝒙𝒊
𝟐 = ∆𝒙𝟏

𝟐 + ∆𝒙𝟐
𝟐 + ∆𝒙𝟑

𝟐 + ∆𝒙𝟒
𝟐= 𝟎

By identifying: 𝑥1 ≡ 𝑥; 𝑥2 ≡ 𝑦; 𝑥3 ≡ 𝑧; 𝑥4 ≡ 𝑖𝑐𝑡

Einstein postulates
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