
Aim and motivation

The primary reason we have chosen to create this kernel is to practice and use RNNs for various
tasks and applications. First of which is time series data. RNNs have truly changed the way
sequential data is forecasted. My goal here is to create the ultimate reference for RNNs here on
kaggle.

LAB 02 RNN - LSTM

In a recurrent neural network we store the output activations from one or more of the layers of the
network. Often these are hidden later activations. Then, the next time we feed an input example to
the network, we include the previously-stored outputs as additional inputs. You can think of the
additional inputs as being concatenated to the end of the “normal” inputs to the previous layer. For
example, if a hidden layer had 10 regular input nodes and 128 hidden nodes in the layer, then it
would actually have 138 total inputs (assuming you are feeding the layer’s outputs into itself à la
Elman) rather than into another layer). Of course, the very �rst time you try to compute the output of
the network you’ll need to �ll in those extra 128 inputs with 0s or something.

Recurrent Neural Networks

Now, even though RNNs are quite powerful, they suffer from Vanishing gradient problem ** which
hinders them from using long term information, like they are good for storing memory 3-4
instances of past iterations but larger number of instances don't provide good results so we don't
just use regular RNNs. Instead, we use a better variation of RNNs: **Long Short Term
Networks(LSTM).

What is Vanishing Gradient problem?

Vanishing gradient problem is a di�culty found in training arti�cial neural networks with gradient-
based learning methods and backpropagation. In such methods, each of the neural network's
weights receives an update proportional to the partial derivative of the error function with respect to
the current weight in each iteration of training. The problem is that in some cases, the gradient will
be vanishingly small, effectively preventing the weight from changing its value. In the worst case,
this may completely stop the neural network from further training. As one example of the problem
cause, traditional activation functions such as the hyperbolic tangent function have gradients in the
range (0, 1), and backpropagation computes gradients by the chain rule. This has the effect of
multiplying n of these small numbers to compute gradients of the "front" layers in an n-layer
network, meaning that the gradient (error signal) decreases exponentially with n while the front
layers train very slowly.

Source: Wikipedia

Long short-term memory (LSTM) units (or blocks) are a building unit for layers of a recurrent neural
network (RNN). A RNN composed of LSTM units is often called an LSTM network. A common LSTM
unit is composed of a cell, an input gate, an output gate and a forget gate. The cell is responsible for
"remembering" values over arbitrary time intervals; hence the word "memory" in LSTM. Each of the
three gates can be thought of as a "conventional" arti�cial neuron, as in a multi-layer (or
feedforward) neural network: that is, they compute an activation (using an activation function) of a
weighted sum. Intuitively, they can be thought as regulators of the �ow of values that goes through
the connections of the LSTM; hence the denotation "gate". There are connections between these
gates and the cell.

Long Short Term Memory(LSTM)

https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVanishing_gradient_problem

The expression long short-term refers to the fact that LSTM is a model for the short-term memory
which can last for a long period of time. An LSTM is well-suited to classify, process and predict time
series given time lags of unknown size and duration between important events. LSTMs were
developed to deal with the exploding and vanishing gradient problem when training traditional
RNNs.

Source: Wikipedia

So the LSTM cell contains the following components

Forget Gate “f” (a neural network with sigmoid)

Candidate layer “C"(a NN with Tanh)

Input Gate “I” (a NN with sigmoid)

Output Gate “O”(a NN with sigmoid)

Hidden state “H” (a vector)

Memory state “C” (a vector)

Inputs to the LSTM cell at any step are Xt (current input) , Ht-1 (previous hidden state) and Ct-1

(previous memory state).

Outputs from the LSTM cell are Ht (current hidden state) and Ct (current memory state)

Components of LSTMs

Working of gates in LSTMs

https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLong_short-term_memory

First, LSTM cell takes the previous memory state Ct-1 and does element wise multiplication with

forget gate (f) to decide if present memory state Ct. If forget gate value is 0 then previous memory

state is completely forgotten else f forget gate value is 1 then previous memory state is completely
passed to the cell (Remember f gate gives values between 0 and 1).

Ct = Ct-1 * ft

Calculating the new memory state:

Ct = Ct + (It * C`t)

Now, we calculate the output:

Ht = tanh(Ct)

I will use LSTMs for predicting the price of stocks of IBM for the year 2017

And now we get to the code...

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout, GRU, Bidirectional
from keras.optimizers import SGD
import math
from sklearn.metrics import mean_squared_error

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

Some functions to help out with
def plot_predictions(test,predicted):
 plt.plot(test, color='red',label='Real IBM Stock Price')
 plt.plot(predicted, color='blue',label='Predicted IBM Stock Price')
 plt.title('IBM Stock Price Prediction')
 plt.xlabel('Time')
 plt.ylabel('IBM Stock Price')
 plt.legend()
 plt.show()

def return_rmse(test,predicted):
 rmse = math.sqrt(mean_squared_error(test, predicted))
 print("The root mean squared error is {}.".format(rmse))

 1
 2

First, we get the data
dataset = pd.read_csv('../input/IBM_2006-01-01_to_2018-01-01.csv', index_col='Date', pars

 3 dataset.head()

 1
 2
 3

Checking for missing values
training_set = dataset[:'2016'].iloc[:,1:2].values
test_set = dataset['2017':].iloc[:,1:2].values

 1
 2
 3
 4
 5
 6

We have chosen 'High' attribute for prices. Let's see what it looks like
dataset["High"][:'2016'].plot(figsize=(16,4),legend=True)
dataset["High"]['2017':].plot(figsize=(16,4),legend=True)
plt.legend(['Training set (Before 2017)','Test set (2017 and beyond)'])
plt.title('IBM stock price')
plt.show()

 1
 2
 3

Scaling the training set
sc = MinMaxScaler(feature_range=(0,1))
training_set_scaled = sc.fit_transform(training_set)

 1
 2
 3
 4
 5
 6
 7
 8

Since LSTMs store long term memory state, we create a data structure with 60 timesteps
So for each element of training set, we have 60 previous training set elements
X_train = []
y_train = []
for i in range(60,2769):
 X_train.append(training_set_scaled[i-60:i,0])
 y_train.append(training_set_scaled[i,0])
X_train, y_train = np.array(X_train), np.array(y_train)

 1
 2

Reshaping X_train for efficient modelling
X_train = np.reshape(X_train, (X_train.shape[0],X_train.shape[1],1))

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

The LSTM architecture
regressor = Sequential()
First LSTM layer with Dropout regularisation
regressor.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1],1)))
regressor.add(Dropout(0.2))
Second LSTM layer
regressor.add(LSTM(units=50, return_sequences=True))
regressor.add(Dropout(0.2))
Third LSTM layer
regressor.add(LSTM(units=50, return_sequences=True))
regressor.add(Dropout(0.2))
Fourth LSTM layer
regressor.add(LSTM(units=50))
regressor.add(Dropout(0.2))
The output layer
regressor.add(Dense(units=1))

Compiling the RNN

 19
 20
 21

regressor.compile(optimizer='rmsprop',loss='mean_squared_error')
Fitting to the training set
regressor.fit(X_train,y_train,epochs=50,batch_size=32)

 1
 2
 3
 4
 5
 6
 7

Now to get the test set ready in a similar way as the training set.
The following has been done so forst 60 entires of test set have 60 previous values whi
'High' attribute data for processing
dataset_total = pd.concat((dataset["High"][:'2016'],dataset["High"]['2017':]),axis=0)
inputs = dataset_total[len(dataset_total)-len(test_set) - 60:].values
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)

 1
 2
 3
 4
 5
 6
 7
 8

Preparing X_test and predicting the prices
X_test = []
for i in range(60,311):
 X_test.append(inputs[i-60:i,0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0],X_test.shape[1],1))
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = sc.inverse_transform(predicted_stock_price)

 1
 2

Visualizing the results for LSTM
plot_predictions(test_set,predicted_stock_price)

 1
 2

Evaluating our model
return_rmse(test_set,predicted_stock_price)

Truth be told. That's one awesome score.

LSTM is not the only kind of unit that has taken the world of Deep Learning by a storm. We have
Gated Recurrent Units(GRU). It's not known, which is better: GRU or LSTM becuase they have
comparable performances. GRUs are easier to train than LSTMs.

In simple words, the GRU unit does not have to use a memory unit to control the �ow of information
like the LSTM unit. It can directly makes use of the all hidden states without any control. GRUs have
fewer parameters and thus may train a bit faster or need less data to generalize. But, with large
data, the LSTMs with higher expressiveness may lead to better results.

They are almost similar to LSTMs except that they have two gates: reset gate and update gate.
Reset gate determines how to combine new input to previous memory and update gate determines
how much of the previous state to keep. Update gate in GRU is what input gate and forget gate were

Gated Recurrent Units

in LSTM. We don't have the second non linearity in GRU before calculating the outpu, .neither they
have the output gate.

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

The GRU architecture
regressorGRU = Sequential()
First GRU layer with Dropout regularisation
regressorGRU.add(GRU(units=50, return_sequences=True, input_shape=(X_train.shape[1],1), a
regressorGRU.add(Dropout(0.2))
Second GRU layer
regressorGRU.add(GRU(units=50, return_sequences=True, input_shape=(X_train.shape[1],1), a
regressorGRU.add(Dropout(0.2))
Third GRU layer
regressorGRU.add(GRU(units=50, return_sequences=True, input_shape=(X_train.shape[1],1), a
regressorGRU.add(Dropout(0.2))
Fourth GRU layer
regressorGRU.add(GRU(units=50, activation='tanh'))
regressorGRU.add(Dropout(0.2))
The output layer
regressorGRU.add(Dense(units=1))
Compiling the RNN
regressorGRU.compile(optimizer=SGD(lr=0.01, decay=1e-7, momentum=0.9, nesterov=False),los
Fitting to the training set
regressorGRU.fit(X_train,y_train,epochs=50,batch_size=150)

The current version version uses a dense GRU network with 100 units as opposed to the GRU
network with 50 units in previous version

 1
 2
 3
 4
 5
 6
 7
 8

Preparing X_test and predicting the prices
X_test = []
for i in range(60,311):
 X_test.append(inputs[i-60:i,0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0],X_test.shape[1],1))
GRU_predicted_stock_price = regressorGRU.predict(X_test)
GRU_predicted_stock_price = sc.inverse_transform(GRU_predicted_stock_price)

 1
 2

Visualizing the results for GRU
plot_predictions(test_set,GRU_predicted_stock_price)

 1
 2

Evaluating GRU
return_rmse(test_set,GRU_predicted_stock_price)

Sequence Generation

Here, I will generate a sequence using just initial 60 values instead of using last 60 values for every
new prediction. Due to doubts in various comments about predictions making use of test set
values, I have decided to include sequence generation. The above models make use of test set so
it is using last 60 true values for predicting the new value(I will call it a benchmark). This is why the
error is so low. Strong models can bring similar results like above models for sequences too but
they require more than just data which has previous values. In case of stocks, we need to know the
sentiments of the market, the movement of other stocks and a lot more. So, don't expect a remotely
accurate plot. The error will be great and the best I can do is generate the trend similar to the test
set.

I will use GRU model for predictions. You can try this using LSTMs also. I have modi�ed GRU model
above to get the best sequence possible. I have run the model four times and two times I got error
of around 8 to 9. The worst case had an error of around 11. Let's see what this iterations.

The GRU model in the previous versions is �ne too. Just a little tweaking was required to get good
sequences. The main goal of this kernel is to show how to build RNN models. How you predict
data and what kind of data you predict is up to you. I can't give you some 100 lines of code where
you put the destination of training and test set and get world-class results. That's something you
have to do yourself.

 1
 2
 3
 4
 5
 6
 7
 8
 9

Preparing sequence data
initial_sequence = X_train[2708,:]
sequence = []
for i in range(251):
 new_prediction = regressorGRU.predict(initial_sequence.reshape(initial_sequence.shape
 initial_sequence = initial_sequence[1:]
 initial_sequence = np.append(initial_sequence,new_prediction,axis=0)
 sequence.append(new_prediction)
sequence = sc.inverse_transform(np.array(sequence).reshape(251,1))

 1
 2

Visualizing the sequence
plot_predictions(test_set,sequence)

 1
 2

Evaluating the sequence
return_rmse(test_set,sequence)

So, GRU works better than LSTM in this case. Bidirectional LSTM is also a good way so make the
model stronger. But this may vary for different data sets. Applying both LSTM and GRU together
gave even better results.

