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Sequences in the Wild

Audio



Sequence Modeling Applications

D00 O [

Many to One One to Many Many to Many
Sentiment Classification Image Captioning Machine Translation

X

One to One
Binary Classification

‘ [

b b i — o B et
The 2T Introduction to dDaenleamma is " " -
= definitely one of the bast courses of its kind .
£ currently available online ‘ !
l 7 O ‘ni):"”;"'.r‘n'ln::(f"o }'s
AL - ' 0 £ cmenie X
WIll'| pass this class? — ,‘ RS~
. /0.

Student > Pass? “A baseball player throws a ball.”




Neurons with Recurrence



The Perceptron Revisited




Feed-Forward Networks Revisited




Feed-Forward Networks Revisited




Handling Individual Time Steps
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f(xt)

output
vector

iInput
vector
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Neurons with Recurrence
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vector
g ny
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iInput
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output input  past memory




Neurons with Recurrence

Yo V1 V2
— —

X0 X1 X2
Ve = f(X¢, he—q)

output input  past memory




Recurrent Neural Networks (RNNs)



Recurrent Neural Networks (RNNs)

output vector )’;t Apply a recurrence relation at every
time step to process a sequence:

] = Ful@) D

cell state function Input old state
h, with weights
W

Note: the same function and set of
input vector X4 parameters are used at every time step

RNNSs have a state, h¢, that Is updated at each time step as a sequence Is processed



RNN Intuition

my Irnn ENN ()
hidden state (0, O, O, O]

output vector

sentence ["I", "lowve", "recurrent", "neural"|]

for word sentence: RN N

prediction, hidden state — my rnn(word, hidden state)

hy

recurrent cell

next word prediction - prediction

input vector
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RNN Intuition

my Irnn ENN ()
hidl:len_state (0, O, O, O]

output vector

sentence ["I", "lowe", "recurrent", "neural"]

for word sentence: RN N

prediction, hidden state — my rnn(word, hidden state)

hy

recurrent cell

next word prediction - prediction

input vector




RNN State Update and Output

output vector ?t

hy

iInput vector Xt



RNN State Update and Output

output vector ?t

hy

Input Vector
iInput vector Xt xt



RNN State Update and Output

output vector yt

Update Hidden State
T T
hy = tanh(Whpphe—1 + Wipxe)

Input Vector
iInput vector Xt xt



RNN State Update and Output

Output Vector
A /)
It = Whyht

output vector )’}t

Update Hidden State
T T
ne = tanh(Wpphe—1 + Wipxe)

Input Vector
iInput vector Xt xt



RNNs: Computational Graph Across Time

o,

Yt

I =  Represent as computational graph unrolled across time

Xt



RNNSs: Computational Graph Across Time

—p Forward pass
Re-use the~Same weightmatrices at efery tirge step

L, L, L-

] 1 1

Ve Yo Y1 ¥ . u Ve
rﬂ Why Why Why Why
W, Wi W xh Wxh

Xt X0 X1 X2 Xt




RNNs from Scratch

class MyRNNCell (tf keras.layers. lLavyer):

def init (self, rnn units, input dim, output dim):
super (MyRNNCell, self) 1init ()

output vector

self W xh self add weight([rnn units, input dim])
self W hh self add weight([rnn units, rnn units])

self W hy self add weight ([output dim, rnn units])

self h tf zeros([(rnn units, 1]) RN N

def call (self, x):

Ny

recurrent cell

self h tf math tanh( self.W hh self. h self W xh X )

tput 1f W h 1f.h -
output - self W _hy * se iInput vector

return output, self.h




RNN Implementation in lensorFlow 1[‘
output vector @
tf. keras. layers.SimpleRNN(rnn units)

L) RNN

recurrent cell

Ny

input vector




RNNs for Sequence Modeling

X
One to One Many to One One to Many Many to Many
“Vanilla" NN Sentiment Classification lext Generation Iranslation & Forecasting
Binary classification Image Captioning Music Generation

... and many other architectures and applications 5.7 6.SI91 Lab!



Sequence Modeling: Design Criteria

To model sequences, we need to:

|. Hanadle variable-length sequences rﬂ
2. Track long-term dependencies m
3.  Maintain information about order

4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet
these sequence modaeling design criteria



A Sequence Modeling Problem:
Predict the Next VWord




A Sequence Modeling Problem: Predict the Next VWord

“This morning | took my cat for a walk.”



A Sequence Modeling Problem: Predict the Next Word

“This morning | took my cat for a walk.”

given these words



A Sequence Modeling Problem: Predict the Next Word

“This morning | took my cat for a walk.”

given these words predict the
next word



A Sequence Modeling Problem: Predict the Next Word

“This morning | took my cat for a walk.”

given these words predict the
next word

Representing Language to a Neural Network

0.1 0.9
X “deep” “'earning’, V {0.8] "0.2]
0.6 0.4

Neural networks cannot interpret words Neural networks require numerical inputs




Encoding Language for a Neural Network

X v e o/ BB

Neural networks cannot interpret words Neural networks require numerical inputs

Embedding: transform indexes into a vector of fixed size.

this @ o One-hot embedding

took “cat”=[0,1,0,0,0,0 ]

Learned embedding

my

morning l.“l.q Naex

|. Yocabulary: 2. Indexing: 3. Embedding:
Corpus of words Word to index Index to fixed-sized vector




Handle Variable Sequence Lengths

1 he food was great

VS.

VWVe visited a restaurant for lunch

VS.

VVe were hungry but cleaned the house before eating




Model Long-Term Dependencies

“France is where | grew up, but | now live in Boston. | speak fluent ___.

VVe need Information from the distant past to accurately
predict the correct word.



Capture Differences in Sequence Order

—

“ Ihe food was gooq, not bad at all.
' o o o
—

VS.

Ihe food was bad, not good at all. %%




Sequence Modeling: Design Criteria

To model sequences, we need to:

|. Hanadle variable-length sequences rﬂ
2. Track long-term dependencies m
3.  Maintain information about order

4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet
these sequence modaeling design criteria



Backpropagation T hrough Time (BPTT)



Recall: Backpropagation in Feed Forward Models

Backpropagation algorithm:

|. lake the derivative (gradient) of the
loss with respect to each parameter

2. Shift parameters in order to
minimize loss




RNNSs: Backpropagation I'hrough Time

rﬂ e e h e
Wxn Wxh W xh Wxn

Xt

- Forward pass

Ly Ly L,
| t t
Vi Yo V1 V2

X0 X1 X2 e Xt



RNNSs: Backpropagation I'hrough Time

- Forward pass

<+ Backward pass

Lo L1 LZ L3
t | t | t| t
Vi Yo Y1 V2 = u Vi

Wh,y Why
g ]
wxh th

Xt

xo xl xz - =N xt




Standard RNIN Gradient Flow




Standard RNIN Gradient Flow

i o h
Whh Whn Whn L
Wn Win Wn

X0

xl xz B xt

Computing the gradient wrt hq involves many factors of Wy, + repeated gradient computation!



Standard RNIN Gradient Flow: Exploding Gradients

Computing the gradient wrt hg involves many factors of Wy, + repeated gradient computation!

Many values > |:
exploding gradients

Gradient clipping to
scale big gradients




Standard RNIN Gradient Flow:Vanishing Gradients

Computing the gradient wrt hg involves many factors of Wy, + repeated gradient computation!

Many values < |:
vanishing gradients

|. Activation function

2. Weight initialization
3. Network architecture




The Problem of Long-Term Dependencies

Why are vanishing gradients a problem!

Multiply many small numbers together

1

crrors due to further back time steps
nave smaller and smaller gradients

1

Blas parameters to capture short-term
dependencies
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" Ihe clouds are Iin the 2

Why are vanishing gradients a problem!

Multiply many small numbers together

1

crrors due to further back time steps
nave smaller and smaller gradients

1

Blas parameters to capture short-term
dependencies



The Problem of Long-Term Dependencies

“The clouds are inthe _"

Yo 1 y2 @
Multiply many small numbers together - - - -
1 @ Q X2 X3 X4

Why are vanishing gradients a problem!?

Va

Errors due to further back time steps
have smaller and smaller gradients

1

Bias parameters to capture short-term
dependencies



The Problem of Long-Term Dependencies

“The cloudsareinthe "

9o 2 9 95,

Multiply many small numbers together
1 -
X4 >

X
Errors due to further back time steps O 3y
have smaller and smaller gradients “l grew up In France, ... and | speak fluent____ "

1

Bias parameters to capture short-term
dependencies

Why are vanishing gradients a problem!?

Va

2
2




The Problem of Long-Term Dependencies

“The cloudsareinthe "

9o 91 9 95,

Multiply many small numbers together
1 -
X4 >

X
Errors due to further back time steps O 3y
have smaller and smaller gradients | grew up in France, ... and | speak fluent___"

1 Yo V1 .- = @
Bias parameters to capture short-term - - - -
dependencies
L X0 @ Xt

Xt+1

Why are vanishing gradients a problem!?

Va

2
2

Ve+t




Trick #1:Activation Functions

10 ——————————————— ~——RelU derivative
07 ‘ Using RelLU prevents
o6 f 'from shrinking the

gradients when x > 0

_ sigmoid derivative



Trick #2: Parameter Initialization

1 0 0O
Initiall ights to identity matri -
NitlallZE WeEIgNLs (O IACNULy Mmatrix 0O 0 1

I, =

INrtialize biases to zero

This helps prevent the weights from shrinking to zero.

oo O O



Trick #3: Gated Cells

|dea: use gates to selectively add or remove information
within each recurrent unit with

gated cell

n STM. GRU. etc.

Gates optionally let information through the cell

Pointwise multiplication

Long Short Term Memory (LSTMs) networks rely on a gated cell to
track information throughout many time steps.



Long Short Term Memory (LSTMs)

Gated LS TM cells control information flow:
|) Forget 2) Store 3) Update 4) Output

Yt

LSTM cells are able to track information throughout many timesteps

1F tf keras. layers LSTM(num units)




LS TMs: Key Concepts

. Maintain a cell state

2. Use gates to control the flow of information
* Forget gate gets rid of irrelevant information
* Store relevant information from current input
* Selectively update cell state

* Qutput gate returns a filtered version of the cell state

3. Backpropagation through time with partially uninterrupted gradient flow



RNN Applications & Limitations




Example Task: Music Generation

" G C A Input: sheet music

Output: next character In sheet music

Listen'ga to .
3rd no.:ment




Example Task: Sentiment Classification

sentiment
<positive>

Input: sequence of words

Output: probability of having positive sentiment

. . . . 1F loge = LI.n0. sorieex cYone sarropy woch LogpCaly, predicosd)

ove this class!

EEEE I I D D = DI ——— E— - L N .- - [ & - - —



Example Task: Sentiment Classification

sentiment Tweet sentiment classification
<positive>
% Ivar Hagendoorn F . .
"-‘.’ HvarHagendoorn ‘ a3 v

The @MIT Introduction to #Deeplearning Is
definitely one of the best courses of its kind
currently available online

' . ' ' introtodeeplearning.com

'»,j Angels-Cave Eallow =~ >
~~
Fephing o SR azus 20

| wouldn’t mind a bit of snow right now. We
haven't had any in my bit of the Midlands this
winter! :(

"~ . .- . 5 " s .. .-. ™ -
- °.. J5 - W 0..

love this class!



Limitations of Recurrent Models

sentiment
<positive>

Limitations of RNNs

Y Encoding bottleneck

. . ' . ~ ) Slow, no parallelization

< Not long memory

love this class!



Goal of Sequence Modeling

RNNs: recurrence to model sequence dependencies

2 i

Sequence of outputs Ve output

Yo V1 V2 Ve
e BB B
l ot I w

Sequence of inputs

X¢_1 iInput




Goal of Sequence Modeling

RNNs: recurrence to model sequence dependencies

Limitations of RNNs output

Yo V1

)72 t-2 t
Y Encoding bottleneck I l I ] ]
a — a — E . a — a —> E feature vector
¥ ) Slow, no parallelization 1 ‘ I I ‘
X0 X1 X9 t—2

X¢_1 iInput

. Not long memory




Goal of Sequence Modeling

Can we eliminate the need for
recurrence entirely?

V1 output

Desired Capabilities Fo

)72 t-2 t
%, Continuous stream I I l ] I
a — a — E . E — a — E feature vector
v Parallelization 1 ‘ I l ‘
o5 X0 X1 X9 $--9

X¢_1 iInput

-~ Long memory




Goal of Sequence Modeling

Can we eliminate the need for
recurrence entirely?

Desired Capabilities output

%, Continuous stream

feature vector

v Parallelization

= Long memory Input




Goal of Sequence Modeling

Idea |: Feed everything Can we eliminate the need for
Into dense network recurrence entirely?

\/ No recurrence Do

Ve—2  Ye-1 Yt output
)( Not scalable

)( No order

feature vector

)( No long memory

Xy iInput

o |dea: ldentify and attend

< to what’s important



Attention Is All You Need



Intuition Behind Self-Attention

Attending to the most important parts of an input.

‘./

\ |

Similar to a

: 'dentify which parts to attend to search problem!

2. Extract the features with high attention




A Simple Example: Search

How can | learn
more about
neural networks!?




Understanding Attention with Search

» YouTube | deep learning | x Q Query (Q) j Holw simiar is the

key to the query!

MIT 6.5191 (2020): Introduction to Deep Learning
I views = 1 wWar ago

Key (K,)

|. Compute attention mask: how
similar is each key to the desired query!




Understanding Attention with Search

MIT 6.5191 (2020): Introduction to Deep Learning ( )
I views = 1 ywar ato Key K2

-l

2. Extract values based on attention:
Return the values highest attention



Learning Self-Attention with Neural Networks

X
Goal: identify and attend to most

. = He lossed the tennis ball to sernve
important features in input.

|.  Encode position information

Data is fed in all at once! Need to encode position information to understand order.



Learning Self-Attention with Neural Networks

X
Goal: identify and attend to most

He lossed the tennis  ball serve

important features in input.
embedding H H H H H H H
. ey ,

Encode position information

pﬂsltmp P P P2 PE Ps Ps Pe

HHEBBHAEE

Position-aware encoding

Data is fed in all at once! Need to encode position information to understand order.




Learning Self-Attention with Neural Networks

Goal: identify and attend to most
important features in input.

Positional Linear
COREN . e ' layer
|.  Encode position information ¢ §
2. Extract query, key, value for search < ﬁ -
Positional Linear
e INg layer
< B -
Positional Linear Output

embedding layer



Learning Self-Attention with Neural Networks

Goal: identify and attend to most Attention score: compute pairwise
important features in input. similarity between each query and key

|.  Encode position information How to compute similarity between two

sets of features!
2. Extract query, key, value for search

3. Compute attention weighting

Similarity
metric

Also known as the "cosine similarrty”



Learning Self-Attention with Neural Networks

Goal: identify and attend to most Attention score: compute pairwise

important features in input. similarity between each query and ey
|.  Encode position information How to compute similarity between two
sets of features’

2. Extract query, key, value for search

3. Compute attention weighting

Similarity
Query Key metric

Also known as the "cosine similarity”



Learning Self-Attention with Neural Networks

Goal: identify and attend to most Attention weighting: where to attend to!
important features in input. How similar is the key to the query!?

|.  Encode position information

2. Extract query, key, value for search

SREE
softmax ( ¢ , )
scaling

Attention weighting

3. Compute attention weighting




= W N

Learning Self-Attention with Neural Networks

Goal: identify and attend to most Last step: self-attend to extract features
important features in input.
.
dion | ' TR
Encode position information =.=  H m
Extract query, key, value for search EEEEE B
Compute attention weighting At".e”m” Output
weighting
Extract features with high attention 0- KT
softmax ( , ) -V =A(Q,K,V)
scaling




Learning Self-Attention with Neural Networks

Goal: identify and attend to most “

important features in input.

|.  Encode position information

Query

2. |
3. Compute attention weighting —
. : : OoOnom
4. Extract features with high attention o 8 m
I i

These operations form a self-attention head Positional Encoding

that can plug into a larger network. -Q KT
Each head attends to a different part of input. H

Extract query, key, value for search

Key Value




Applying Multiple Self-Attention Heads

| am—

Output of attention head | Output of attention head 2 Output of attention head 3



Self-Attention Applied

Biological Sequences Computer Vision

Language Processing

A @‘\;

" "».l‘v-“ N

An armchair in the shape
of an avocado

Transformers: BERT, GP T Alphalold2 Vision Iransformers

Devlin et al., NAACL 2019 Jumper et al., Nature 202 | Dosovitskiy et al., ICLR 2020
Brown et al., NeurlPS 2020



Deep Learning for Sequence Modeling: Summary

|. RNNSs are well surted for sequence modeling tasks

2. Model sequences via a recurrence relation

3. Training RNINs with backpropagation through time

4. Models for music generation, classification, machine translation, and more
>. Self-attention to model sequences without recurrence

6. Self-attention Is the basis for many large language models — stay tuned

|

l
w M& IWJM’ N “, ') ,1" \J ‘l“ A ‘M‘A “ k«“ ‘ N ) M»W
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