CHAPTER 4

SYNCHRONIZATION OF PROCESSES BY
MONITORS

/ INTRODUCTION

* The risk of programming errors is significant when
using semaphores (forgetting to signal(s) or using P
instead of V). In addition, synchronization using the P
and V operations requires the study of the entire
concurrent program to understand the synchronization
aspect that it contains.

* To overcome these drawbacks, the concept of a
Monitor was introduced.

Slide 2 of15

DEFINITION OF A MONITOR

* PRINCIPLE.The principle of a monitor is to control synchronization by using a
unit that encapsulates the definition of the "critical" resource and the
operations that manipulate it.

* DEFINITION.

— A monitor defines a set of variables that keep the state of the resource
and a set of procedures that manipulate this resource.

— A monitor also has an initialization part that initializes the variables before
any operation on the resource is invoked.

— The values of the variables of a monitor are only accessible through the
procedures of the monitor itself. These procedures can in turn have
parameters and local variables.

Slide 3 of15

DECLARATION OF A MONITOR

* This is the general form of a monitor is: et
* Monitor M; 2 1] P
e Var.......; {declaration of shared variables} * Procedure Pn(Parameters);
e Procedure P1(Parameters); * Begin
° Begin ———
| * End;
. End: * Begin
. Initialization of shared
variables;
* Procedure P2(Parameters); I
* Begin e End;

Slide 4 of15

DEFINITION OF A MONITOR

* Call of a procedure is done by a classical call :
—Call M.P1(effective parameters);

* The execution of a procedure P1 is done in mutual
exclusion with the rest of the procedures of the
monitor (including itself). This guarantees the integrity
of the permanent variables.

Slide 5 of15

SYNCHRONIZATION

* Process synchronization by monitors is done by using
conditions. These are defined as follows:

A condition is declared as a variable C.

\J e Each condition C has a queue containing the processes
blocked behind this condition (figure 1).

Slide 6 of15

SYNCHRONIZATION

>

—

—

Files d'attente d'entrée au

moniteur

- shared data

- Conditions: C1, C2;
>

—»

NN

\

-initialization of
shared data

Figure 1. Structure of a monitor

Slide 7 of15

SYNCHRONIZATION

* Each monitor can have a variety of conditions that can only
be manipulated by two operations: Wait and Signal.

* C.wait : When executed by a process, it blocks the process
and places it in a queue associated with the condition C.

* C.Signal: When executed by a process, it checks if the
gueue of C is not empty, in which case, it releases one of
the processes waiting. Note that if no process is blocked
behind the condition, the Signal operation has no effect.

Slide 8 of15

/ SYNCHRONIZATION

* When a process executes C.signal, it will be blocked until
the awakened process leaves the monitor.

* Processes blocked by a Condition are prioritized for access
to the monitor before a new process can access to execute

\ a monitor procedure.

* Only one process accesses the monitor at a time. Others
wait in an input queue (Figure 1).

* The monitor structure ensures that only one process can
be active in the monitor at a time.

Slide 9 of15

i f

o/
o A0
/s

EXAMPLES OF SYNCHRONIZATION USING IMIONITORS

Rendezvous point between processes

l * HypotHEsIs: Consider N processes that evolve in

parallel but when they reach a point in their execution
(called the rendezvous point), each process waits for

the arrival of all the others at their rendezvous points.
* The last one to arrive will wake up the others.

* The awakening is done in cascade: each one wakes up the other
by executing tousarrivés.signal.

Slide 10 of15

N

EXAMPLES OF SYNCHRONIZATION USING MONITORS

Program gestprocess;

Monitor Rendezvous;
Const N=5;

Var_ comptewr: integer:;
Tousarrives : condition;

Procedure jesunisarrive,

Begin
Comptewr:=compteur+1;
If comptemr <N then tousarrives. Wait ;
tousarrives.Signal;

end:

begin

compteur:=0;
end;

Rendezvous point between processes

Process Pi;
Begin

)

Call Rendezvous.jesnisarrive

P1,P2,.....P5

End, Slide 11 of15

EXAMPLES OF SYNCHRONIZATION USING IMONITORS

Producer/Consumer problem

HypoTHESIS: Consider two categories of processes:
producers and consumers.

 Producers produce objects (any value) and deposit
them in a shared memory called: Buffer.

 Consumer processes use the values deposited in the
buffer.

e The buffer has a limited size of N.

Slide 12 of15

EXAMPLES OF SYNCHRONIZATION USING IMONITORS

Producer/Consumer problem
Synchronization constraints: (Synchronization scheme)

The operation of these two categories of processes must satisfy the following
constraints::

* Producers do not deposit objects when the buffer is full.
 Consumers do not consume from the buffer when it is empty.
* Only one process can access the buffer at a time.

e Objects must not be lost or consumed twice.

e Solution:
* Using a monitor that will manage the shared resource buffer.
 The monitor contains the procedures depoer and retirer.
 The monitor ensures synchronization between producer and consumer. side 13 of1s

EXAMPLES OF SYNCHRONIZATION USING MONITORS

Producer/Consumer problem

Program ProductemrsConsommatemns: Procedure retirer Cftﬂl ﬂh:ﬂhj Et);
Const N=...:

Tvpe objet=....: BEg]ll))
If comptewr=0 then nomvide, wait:
Monitor Gesttampon; ob:= Tﬂlllll'l]'ll[l]'llt] :
Const, N=..; out:=out+1modN;
1 L R N *
nonVide . nonPlein _: condition; nonplein.signal:
inout : integer End:
comptenr:0... .N-1:
Procedmre deposer(ob:objet):
Begin Begin
If comptemr=N then nomplein. wait: Comptewr;=0;
Tampon[in]:=ob;:
= 1:=0b; In:=0:
In;=in+1modN; e
Compteur:=compteunr+1; Out:=0:
nonvide,.signal: End:

Slide 14 of15
End:

EXAMPLES OF SYNCHRONIZATION USING MONITORS

Producer/Consumer problem

Process Producteur-I; Process Consommateur-j;
Var objetproduit:obijet; Var objetconsomme: objet;
Begin Begin
Repeat Repeat
Produire (objetproduit); Call Gesttampon.Retirer (0bjetconsomme);
Call Gesttampon.Deposer(objetproduit); _
consommer(objetconsomme);

Until Fin= true; Until Fin= true;
End : End :
Begin

ParBegin

Producteur-1;Producteur-2; Producteur-3;; Producteur-I;
Consommateur-1; Consommateur-2; Consommateur-3;......;Consommateur-j;
—FarkEnd:
End:

Slide 15 of15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

