
SYNCHRONIZATION OF PROCESSES BY
MONITORS

CHAPTER 4

INTRODUCTION

• The risk of programming errors is significant when
using semaphores (forgetting to signal(s) or using P
instead of V). In addition, synchronization using the P
and V operations requires the study of the entire
concurrent program to understand the synchronization
aspect that it contains.

• To overcome these drawbacks, the concept of a
Monitor was introduced.

Slide 2 of15

DEFINITION OF A MONITOR

• PRINCIPLE.The principle of a monitor is to control synchronization by using a
unit that encapsulates the definition of the "critical" resource and the
operations that manipulate it.

• DEFINITION.

– A monitor defines a set of variables that keep the state of the resource
and a set of procedures that manipulate this resource.

– A monitor also has an initialization part that initializes the variables before
any operation on the resource is invoked.

– The values of the variables of a monitor are only accessible through the
procedures of the monitor itself. These procedures can in turn have
parameters and local variables.

Slide 3 of15

DECLARATION OF A MONITOR

• This is the general form of a monitor is:

• Monitor M;

• Var ……..; {declaration of shared variables}

• Procedure P1(Parameters);

• Begin

• …….

• End;

• Procedure P2(Parameters);

• Begin

• …….

• End;

• ………

• ………

• ………

• ………

• Procedure Pn(Parameters);

• Begin

• …….

• End;

• Begin

• Initialization of shared
variables;

•

• End;

Slide 4 of15

DEFINITION OF A MONITOR

• Call of a procedure is done by a classical call :

–Call M.P1(effective parameters);

• The execution of a procedure P1 is done in mutual
exclusion with the rest of the procedures of the
monitor (including itself). This guarantees the integrity
of the permanent variables.

Slide 5 of15

SYNCHRONIZATION

• Process synchronization by monitors is done by using
conditions. These are defined as follows:

• A condition is declared as a variable C.

• Each condition C has a queue containing the processes
blocked behind this condition (figure 1).

Slide 6 of15

SYNCHRONIZATION

Slide 7 of15

SYNCHRONIZATION

• Each monitor can have a variety of conditions that can only
be manipulated by two operations: Wait and Signal.

• C.wait : When executed by a process, it blocks the process
and places it in a queue associated with the condition C.

• C.Signal: When executed by a process, it checks if the
queue of C is not empty, in which case, it releases one of
the processes waiting. Note that if no process is blocked
behind the condition, the Signal operation has no effect.

Slide 8 of15

SYNCHRONIZATION

• When a process executes C.signal, it will be blocked until
the awakened process leaves the monitor.

• Processes blocked by a Condition are prioritized for access
to the monitor before a new process can access to execute
a monitor procedure.

• Only one process accesses the monitor at a time. Others
wait in an input queue (Figure 1).

• The monitor structure ensures that only one process can
be active in the monitor at a time.

Slide 9 of15

EXAMPLES OF SYNCHRONIZATION USING MONITORS

Rendezvous point between processes

• HYPOTHESIS: Consider N processes that evolve in
parallel but when they reach a point in their execution
(called the rendezvous point), each process waits for
the arrival of all the others at their rendezvous points.

• The last one to arrive will wake up the others.

• The awakening is done in cascade: each one wakes up the other

by executing tousarrivés.signal.

Slide 10 of15

Rendezvous point between processes

Slide 11 of15

EXAMPLES OF SYNCHRONIZATION USING MONITORS

Producer/Consumer problem

HYPOTHESIS: Consider two categories of processes:
producers and consumers.

• Producers produce objects (any value) and deposit
them in a shared memory called: Buffer.

• Consumer processes use the values deposited in the
buffer.

• The buffer has a limited size of N.

Slide 12 of15

EXAMPLES OF SYNCHRONIZATION USING MONITORS

Producer/Consumer problem

Synchronization constraints: (Synchronization scheme)

The operation of these two categories of processes must satisfy the following
constraints::

• Producers do not deposit objects when the buffer is full.

• Consumers do not consume from the buffer when it is empty.

• Only one process can access the buffer at a time.

• Objects must not be lost or consumed twice.

• Solution:

• Using a monitor that will manage the shared resource buffer.

• The monitor contains the procedures depoer and retirer.

• The monitor ensures synchronization between producer and consumer. Slide 13 of15

EXAMPLES OF SYNCHRONIZATION USING MONITORS

Producer/Consumer problem

Slide 14 of15

EXAMPLES OF SYNCHRONIZATION USING MONITORS

Producer/Consumer problem

Slide 15 of15

EXAMPLES OF SYNCHRONIZATION USING MONITORS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

