
1

Morphological Analysis

CHAPTER III

Morphological analysis, in NLP, refers to the computational processing of word structures

Morphological level

▪ Word formatting

▪ Inflection

▪ Derivation

▪ Stemming

▪ Lemmatization

▪ POS tagging

2

Morphological analysis
DEFINITION

3

Morphology is the branch of linguistics concerned with the structure

and form of words in a language. It aims to break down words into their

constituent parts, such as roots, prefixes, and suffixes, and understand

their roles and meanings

Arabic
Morpho

Tool

Morphological analysis
IMPORTANCE

4

▪ Understanding Word Formation: Identifying the basic building blocks of

words, which is crucial for language comprehension.

▪ Improving Text Analysis: Breaking down words into their roots and affixes,

enhances the accuracy of text analysis tasks like sentiment analysis and

topic modeling.

▪ Enhancing Language Models: Providing detailed insights into word formation,

improving the performance of language models used in tasks like speech

recognition and text generation.

▪ Facilitating Multilingual Processing: Handling the morphological diversity of

different languages.

Morphological analysis
KEY TECHNIQUES

5

▪ Stemming: reduces words to their base or root form, usually by

removing suffixes. The resulting stems are not necessarily valid words

but are useful for text normalization

▪ Lemmatization: reduces words to their base or dictionary form (lemma).

It considers the context and part of speech, producing valid words

(using lexical databases)

▪ Morphological parsing: involves analyzing the structure of words to

identify their morphemes (roots, prefixes, suffixes). It requires

knowledge of morphological rules and patterns.

MORPHEME

6

The words are often made up of smaller units called morphemes

(smallest meaningful units).

▪ Lexical morpheme (Entries of a dictionary): Base form

▪ Grammatical morpheme (Affixes)

Morphemes

Free Bound

Inflectional DerivationalLexical Functional

▪ Nouns

▪ Verbs

▪ Adverbs

▪ Conjunctions (but, then)

▪ Prepositions (in, on)

▪ Pronouns (he, she)

▪ Suffixes

(-er, -ed, -est, -s)

▪ Prefixes (-un, -re, -anti)

▪ Suffixes (-ness, -ship)

INFLECTION

8

Morphological Inflection (التصريف) is the task of generating a target

(inflected form) word from a source word (base form), given a

morphological attribute (e.g. number, tense, and person)

Affixation (الزيادة) Duplication (التضعيف) Alteration (الإبدال)

Petit, Petite, Petites Zigzag Blanc, Blanche

Work, Works, Working Byebye, Pingpong Major, Minor

درس، يدرس، درست زلزل قال، قول

طالب، طالبة كيف كيف اصطبر، اصتبر، فم، فو

DERIVATION

9

A derivation derives (الاشتقاق) a new word from an existing word by adding,

changing, or removing an non-inflectional affix

Affixation With patterns (الأوزان)

Refaire, Final كتب-فعل

Unhappy, Happiness كاتب-فاعل

(درس) ، مدرسة (مكتبة)كتب مكتوب-مفعول

استعمل مكتبة-مفعلة

WORD FORMATION

10

Composition (المركب المزجي) Plate-Forme, TimeOut, حضرموت

Truncation (الترخيم) Biblio, lab, exam, يا صاح

Portmanteau word (النحت) Informatique, Transistor, بسملة

(Information-Automatique)
(Transfer-Resistor)

Acronym (الاختصار) RADAR (RAdio Detection And
Ranging)

STEMMING

11

Stemming merely removes common suffixes from word tokens

المسجدمحمد،

سجدحمد،

Root-based Stemming

يسترجعون

Light stemming

يسترجع

LEMMATIZATION

12

Lemmatization ensures the output word is an existing normalized form of

the word (Lemma) that can be found in the dictionary

Parts-of-Speech Tagging

13

POS tagging is the process of assigning grammatical categories or “tags”

to each word in a sentence based on its syntactic role

POS Use Cases

14

▪ Information Retrieval: Understand the relationships between words

▪ Grammar Checking: Identifying grammatical errors and suggesting

corrections

▪ Machine Translation: Enhances the accuracy of translating sentences

between languages.

▪ Syntactic Analysis: Understanding the grammatical structure of a sentence

(e.g: identify the subject, verb, object)

▪ Semantic Analysis: Understanding the meaning of words in context. (e.g:

distinguishing between a noun and a verb)

▪ Named Entity Recognition (NER): Providing information about the

grammatical category of words. (e.g: “New York” is a proper noun)

POS Workflow

15

Tokenization
Loading

Language
Model

Text
Preprocessing

Linguistic
Analysis

POS Tagging

Divide the

input text into

discrete tokens

Utilize a library

such as NLTK or

SpaCy

Correct PoS

labeling is
aided by clear

text

Determine the

text’s
grammatical

structure

Understanding

each word’s

purpose inside
the sentence,

(adjective, verb,

noun, ..)

Types of POS Tagging

16

▪ Rule-Based: involves assigning words their respective parts of speech using

predetermined rules

Example: (Rule: Assign the POS tag “noun” to words ending in “-tion” or “-ment.”)

▪ Statistical: Utilizing probabilistic models (e.g: Using HMMs)

▪ Neural-Based: Use neural networks to learn patterns from data

POS Challenges

17

▪ Ambiguity: Words with multiple meanings

▪ Out-of-Vocabulary Words: Words not present in the training data

▪ Complexity in Morphologically Rich Languages: Complex word forms

▪ Training Data Dependency: Inadequate training data may lead to inaccurate tagging

▪ Parsing Errors: Errors in POS tagging can propagate to downstream parsing tasks

The 30 commonly used POS tags

18

POS: Example

19

“The quick brown fox jumps over the lazy dog.”

•“The” (DT): Determiner

•“quick” (JJ): Adjective

•“brown” (JJ): Adjective

•“fox” (NN): Noun

•“jumps” (VBZ): Verb

•“over” (IN): Preposition

•“the” (DT): Determiner

•“lazy” (JJ): Adjective

•“dog” (NN): Noun

POS with HMMs

20

HMM-based POS tagging model undergoes training on a sizable annotated

text corpus to discern patterns in various parts of speech. Leveraging this

training, the model predicts the POS tag for a given word based on the

probabilities associated with different tags within its context.

Origins of HMMs

21

▪ Hidden Markov Models (HMM) were introduced by Baum in the 1970s; this

model is inspired by probabilistic automata

▪ A probabilistic automata is defined by a structure composed of states and

transitions and by a set of probability distributions over the transitions. Each

transition is associated with a symbol from a finite alphabet. This symbol is

generated each time the transition is taken

HMM: Definition

22

▪ An HMM is also defined by a structure composed of states and

transitions and by a set of probability distributions over the transitions

▪ The essential difference with probabilistic automata is that the

generation of symbols occurs at the states rather than on the

transitions. Additionally, each state is associated not with a single

symbol but with a probability distribution over the symbols of the

alphabet

HMM applications

23

HMMs are used in the following fields:

• Speech recognition

• Handwritten text recognition

• DNA sequence recognition

• Information extraction

• POS tagging, etc.

An HMM is defined by a quadruplet (S, ∑, T, G)

▪ H=(S, ∑, T, G)

▪ S : a set of N states, it contains two particular states : Start et End indicating the

beginning and end of a sequence

▪ ∑ : an Alphabet composed of M symbols.

▪ T : a matrix that indicates the probabilities of transition between states

o T = S-{end} x S-{start} → [0,1]

▪ G : a matrix that indicates the probabilities of emission for states

o G : S-{start,end} x ∑ → [0,1]

HMM Formarilization

▪ Consider P(o/s), the probability of generating the symbol o by the state s.

▪ We do associate to each state s :

o a distribution of transition probabilities :

෍

𝑠′𝜖𝑠

𝑃 𝑠 → 𝑠′ = 1

o a distribution of emission probabilities :

෍

𝑜′∈∑

𝑃(𝑜′ / 𝑠) = 1

HMM Formarilization

▪ The figure shows an example of HMM with 7 states and 11 transitions :

HMM: Example

• S={start,1,2,3,4,5,end}

• ∑={a,c,b}

• T : Transition matrix

• G : Emission matrix

HMM: Example

This HMM allows to generate the following observable sequences:

 abca, aacb, ab,…etc.

To these observable sequences correspond the following hidden

sequences:

1-3-5-2, 1-4-5-2, 2-4

Each observable sequence could be generated by lot of possible

paths.

For example, the sequence abccb could be generated by:

Path 1 : start-1-3-5-5-2-end

Path 2 : start-1-4-5-5-2-end

Path 3 : start-2-4-5-5-2-end

HMM: Example

What will be the probability of generating abccb by this HMM?

Path 1 : start-1-3-5-5-2-end

Path 2 : start-1-4-5-5-2-end

Path 3 : start-2-4-5-5-2-end

P(path 1) = (0.5 x 1) x (0.7 x 0.75) x (1 x 1) x (0.25 x 1) x (0.25 x 0.8) x (0.5) = 6.5 x 10-3

P(path 2) = (0.5 x 1) x (0.3 x 0.1) x (0.6 x 1) x (0.25 x 1) x (0.25 x 0.8) x (0.5) = 2.2 x 10-3

P(path 3) = (0.5 x 0.2) x (0.5 x 0.1) x (0.6 x 1) x (0.25 x 1)x(0.25 x 0.8) x (0.5) = 0.75 x 10-3

The probability of generating the sequence abccb by this HMM is:

P(abccb) = (6.5 + 2.2 + 0.75) x 10-3 = 9.45 x 10-3

HMM: Example

Will: 0,75
Can: 0,25

Mary: 0,45
Jane: 0,22
Will: 0,11
Spot: 0,22

Spot: 0,25
See: 0,5
Pat: 0,25

0,25

0,75

0,11

0,33

0,11

0,45

0,25

0,75

1

POS with HMM: Example

POS with HMM: Example

N M V <E>

<S> 0,75 0,25

N 0,11 0,33 0,11 0,45

M 0,25 0,75

V 1

Mary Jane Will Spot Can See Pat

N 0,45 0,22 0,11 0,22

M 0,75 0,25

V 0,25 0,5 0,25

T: Transition matrix

G: Emission matrix

Will: 0,75
Can: 0,25

Mary: 0,45
Jane: 0,22
Will: 0,11
Spot: 0,22

Spot: 0,25
See: 0,5
Pat: 0,25

0,25

0,75

0,11

0,33

0,11

0,45

0,25

0,75

1

POS with HMM: Example

POS of « Will can spot Mary » ?

POS of « Will can spot Mary » ?

Path 1 = <S>→N→M→N→N→<E>

P(Path 1) = (0,75x0,11) x (0,33x0,25) x (0,25x0,22) x (0,11x0,45) x (0,45) = 0,0000083385

Path 2 = <S>→N→M→V→N→<E>

P(Path 2) = (0,75x0,11) x (0,33x0,25) x (0,75x0,25) x (1x0,45) x (0,45) = 0,00025842

The probability of the second sequence is much higher

POS Tags : {Will : N, can : M, spot : V, Mary : N}

How to train HMM-Based POS tagger?

Let’s consider the following corpus:

▪ Mary Jane can see Will

▪ Spot will see Mary

▪ Will Jane spot Mary?

▪ Mary will pat Spot

Emission matrix
1.The word “Mary” appears four times as Noun. The

word “Will” appears three times as Model and one

time as Noun, etc.

Mary Jane Will Spot Can See Pat

N 4 2 1 2 0 0 0

M 0 0 3 0 1 0 0

V 0 0 0 1 0 2 1

2.Let’s divide each tag by the total number of their

appearances (e.g: Noun appears nine times)

Mary Jane Will Spot Can See Pat

N 4/9 2/9 1/9 2/9 0 0 0

M 0 0 3/4 0 1/4 0 0

V 0 0 0 1/4 0 2/4 1/4

Emission matrix

Transition matrix
1.Let’s count the co-occurrences of tags. (e.g: <S> is

followed by Noun three times and by Model one

time, etc.)

2.Let’s divide each term in a row by the total number

of co-occurrences of the tag (e.g: Model is followed

by any other tag four times, etc.

N M V <E>

<S> 3 1 0 0

N 1 3 1 4

M 1 0 3 0

V 4 0 0 0

N M V <E>

<S> 3/4 1/4 0 0

N 1/9 3/9 1/9 4/9

M 1/4 0 3/4 0

V 4/4 0 0 0 Transition matrix

N M V <E>

<S> 3/4 1/4 0 0

N 1/9 3/9 1/9 4/9

M 1/4 0 3/4 0

V 4/4 0 0 0

Mary Jane Will Spot Can See Pat

N 4/9 2/9 1/9 2/9 0 0 0

M 0 0 3/4 0 1/4 0 0

V 0 0 0 1/4 0 2/4 1/4

N M V <E>

<S> 0,75 0,25

N 0,11 0,33 0,11 0,45

M 0,25 0,75

V 1

Mary Jane Will Spot Can See Pat

N 0,45 0,22 0,11 0,22

M 0,75 0,25

V 0,25 0,5 0,25

T: Transition matrix

G: Emission matrix

Emission matrix & Transition matrix

HMM challenges

Let’s consider H an HMM and a given sequence of symbols O=O1O2…Ot

▪ What is the probability of generating O with H?

Solution: Forward-backward algorithm

▪ What is the sequence of states S=S1S2…St in H that has the maximum probability of

generating O?

Solution: Viterbi algorithm

▪ How to adjust the parameters of H (transition and emission probabilities) to best

represent the sequences being processed?

Solution: Baum-Welch algorithm

Viterbi Algorithm

1. Develop all possible paths

1. Remove edges and vertices with 0

Viterbi Algorithm

3. Calculate probability of all paths leading to a

node then remove edges and paths with lower
probability

4. start from the end and trace backward (since

each state has only one incoming edge)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

