CHAPTER II Text preprocessing & Data representation

Before a model processes text for a specific task, the text often needs to be **preprocessed** to improve model **performance** or to turn words and characters into a **format** the model can understand

Preprocessing

- Character Encoding
- Text Segmentation
- Text Cleaning
- Tokenization
- Text Encoding (Feature extraction)
- Corpora & Datasets
- Exploratory Data Analysis

Charater encoding

Character encoding is a system for representing characters as numerical values, known as **code points**. These code points allow computers to store and manipulate text, which can then be displayed or used in other ways

- Two main encoding standards:
 - **ASCII:** assigns unique numbers to each symbol (128 code points).
 - **Unicode:** universal character encoding standard that could represent all the world's languages.

ASCII (American Standard Code for Information Interchange)

ASCII has **128 code points**, which means that it can represent 128 characters and symbols. Some of these code points represent instructions for the computer, while others represent printable characters such as letters and digits.

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	l Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	×
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1.00	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	в	[VERTICAL TAB]	43	2B	+	75	4B	ĸ	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	1.00	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Р	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Х	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	ЗA	÷	90	5A	z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	١	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

ASCII Limitations:

- o 7-bit encoding
- Only 94 printable characters
- Not suited for any language
- Extended ASCII (8-bit encoding)

Unicode

A single, universal character encoding standard that could represent all the world's languages

- o 16-bit encoding scheme
- 65635 characters (0 to 10FFFF) noted (U+0000 to U+10FFFF)
- Suited for any language
 - UTF-8: uses one to four bytes per code point(compatible with ASCII)
 - o UTF-16: uses one or two 16-bit per code point
 - UTF-32: uses four bytes per code point

UTF-8 Format having leading bits for 1 byte, 2 bytes, 3 bytes, 4 bytes

Hello world!

ASCII/UTF-8: 48 65 6c 6c 6f 20 77 6f 72 6c 64 21

UTF-16: 0048 0065 006c 006c 006f 0020 0077 006f 0072 006c 0064 0021

UTF-32: 0000048 0000065 000006c 000006c 000006f 0000020 0000077 000006f 0000072 000006c 0000064 0000021

UTF-8

 $\begin{array}{c} 100 \rightarrow 64 \\ 233 \rightarrow C3 \ A9 \\ 2357 \rightarrow E0 \ A4 \ B5 \\ 128077 \rightarrow F0 \ 9F \ 91 \ 8D \end{array}$

Hello world

UTF-8: 48 65 6c 6c 6f 20 77 6f 72 6c 64 F0 9F 91 8D 21

Text segmentation

Text segmentation is the process of dividing written text into meaningful units, such as words, sentences or topics, using boundary markers

1-Word segmentation: dividing a string of written language into its component words (e,g:

using word space)

- Problem:
 - Compounds:

[ice box = ice-box = icebox], [cordon bleu], [ورد، وفر]

• No word delimiter in some written scripts (e,g: Chinese)

[美国会不同意。: The US will not agree vs The US Congress does not agree]

Detecting morphemes -

Text segmentation

Text segmentation is the process of dividing written text into meaningful units, such as words, sentences or topics, using boundary markers

2- Sentence segmentation: dividing a string of written language (text) into sentences (e,g:

using punctuation). The period (.) is a reasonable approximation

- Problem:
 - Use of period in abbreviations (Mr. Smith went to..)
 - Not all written scripts contain regular punctuation
 - Sentence vs Paragraph detection

北雷縣與英興歐见辰宫哀雨朝 款結澍澯澡綷瀙凬威尯兜兠兼 削判刻刻削動劑創創測御痧靱娄 創力加劫尨粉励肋塑尴朖勘李 北縱巴医叵正囚叵叵靣重庭 場號锿镓減蹑椰镜蘻證印印 段亂層腷駁廍腳廞麘麠厬牖 毀取取取款款款取與惠琴矍

Text segmentation

Text segmentation is the process of dividing written text into meaningful units, such as words, sentences or topics, using boundary markers

- 3- Topic segmentation: dividing a text into topics or discourse
- Subtasks:
 - Topic identification
 - Text segmentation

House of Wax is a 1953 American warnercolor 3-D horror film about a	
lisfigured sculptor who repopulates his destroyed wax museum by murdering	
eople and using their wax-coated corpses as displays. Directed by Andre	
DeToth and starring Vincent Price, it is a remake of Warner Bros.' "Mystery of	
he Wax Museum" (1933), without the comic relief featured in the earlier	Chunk 1
ilm."House of Wax" was the first color 3-D feature from a major American	
tudio and premiered just two days after the Columbia Pictures film "Man in	
he Dark", the first major-studio black-and-white 3-D feature.It was also the	
irst 3-D film with stereophonic sound to be presented in a regular theater.	
t premiered nationwide on April 10, 1953 and went out for a general release on	
April 25, 1953.In 1971, it was widely re-released to theaters in 3-D, with a full	Chunk 2
dvertising campaign. Newly-struck prints of the film in Chris Condon's	Churk 2
ingle-strip StereoVision 3-D format were used.	
Another major re-release occurred during the 3-D boom of the early 1980s.In	
005, Warner Bros. distributed a new film also called "House of Wax", but its	
lot is very different from the one used in the two earlier films. The film starred	
lisha Cuthbert, Chad Michael Murray, Paris Hilton and Jared Padalecki. This	Chunk 3
ersion received largely negative reviews from critics. In 2014, the film was	
leemed "culturally, historically, or aesthetically significant" by the Library of	
Congress and selected for preservation in the National Film Registry.	

Text cleaning

Text cleaning is the process of removing unnecessary data from text in order to get more consistent and standardized format. Cleaning depends on the type of task and data.

- Lowercasing Text
- Removing Punctuations
- Removing Numbers
- Removing Extra space
- Replacing the repetitions of punctations
- Removing Emojis and emoticons
- Removing Stop words
- Removing Diacritics

Tokenization

Tokenization is **splitting** a phrase, sentence, paragraph, or an entire text document into smaller units, such as individual words, terms, numbers or punctuation marks. Each of these smaller units are called **tokens**.

- Word Tokenization: Splitting a sentence into individual words.
- Sentence Tokenization: Breaking a paragraph into separate sentences.

Natural Language Processing ['Natural', 'Language', 'Processing']

Text encoding

Text encoding is a process to **convert** meaningful **text** into **number/vector** representation so as to preserve the **context** and relationship between words and sentences, such that a machine can understand the pattern associated in any text and can make out the context of sentences

Text encoding techniques

- $\circ~$ Index-based encoding
- \circ Bag-of-Words
- \circ **N-Grams**
- \circ **TF-IDF**
- \circ One-Hot-Encoding
- \circ Word Embeddings
 - Word2Vec (CBoW, Skip-Gram)
 - GLoVE

Index-based encoding

Bag-of-Words (BoW)

N-Grams

TF-IDF

- Weights each word by its importance
- TF (Term Frequency) = Number of occurrences of the word in document / Number of words in document
- IDF (Inverse Docment Frequency) = log(number of documents in the corpus / number of documents that include the word)

One-Hot-Encoding

Word2Vec

A word2vec model is a simple neural network model with a single hidden layer. The task of this model is to predict the nearby words for each and every word in a sentence.

Word2Vec (Training data)

We need a labeled dataset to train a neural network model. This means the dataset should have a set of inputs and an output for every input.

Input	Output
بذهب	محمد
يذهب	إلى
محمد	يذهب
محمد	إلى
محمد	المسجد
إلى	يذهب
إلى	محمد
إلى	المسجد
إلى	کل

Word2Vec (Embedding)

Suppose the number of unique words in this **dataset** is **5,000** and we wish to create word **vectors** of size **100** each

Word2Vec Model Architecture

Word2Vec (After training)

Once this model is trained, we can easily extract the learned weight matrix $W_{V \times N}$ and use it to extract the word vectors N

Word2Vec (2D Visualization)

Corpora

A corpus is a significant collection of texts written in everyday language that computers can read.

Sources: Digital text, Audio transcripts, Scanned documents

Importance of corpora in NLP:

- Understand languages
- Text structure
- Discover word relationships
- Learning process

Corpora use cases in NLP

- Training Machine Learning Models: Corpora are used to teach (train and refine) machine learning models.
- Language Understanding: Learn how words and phrases are used in context. Help to generate new languages
- Rule-Based Systems: Used by linguists and NLP experts to develop and test linguistic rules and patterns.
- Lexicon and Semantics: Lexicons (dictionaries) are created and expanded with the help of corpora.
- Statistical Analysis: Corpora give information that is necessary for probabilistic NLP approaches to examine word frequency distributions, co-occurrence patterns, and other statistical features.
- Domain-Specific Knowledge: Specific to particular topics or fields. (legal documents, medical records,...)

Types of Corpora

Corpus features

• Influence on output quality

Exploratory Data Analysis (EDA) DEFINITION

EDA involves examining and visualizing data sets to summarize their main characteristics, often with the help of statistical graphics and other data visualization techniques.

Exploratory Data Analysis (EDA)

KEY STEPS & TECHNIQUES

Understand The Data

- Examine the dataset's structure
- Check for missing values
- Explore basic summary statistics (mean, median,..)

Univariate Analysis

- Examine the distribution of each variable individually
- Use histograms, box plots, and summary statistics
- Identify outliers and potential errors in the data

Bivariate Analysis

- Explore relationships between pairs of variables
- Use scatter plots, correlation matrices, and cross-tabulations
- Identify potential patterns or trends

Multivariate Analysis

- Extend the analysis to multiple variables simultaneously
- Use techniques like heatmaps and pair plots to visualize relationships
- Identify potential clusters or groups in the data

Visualization

- Utilize various data visualization techniques such as bar charts, pie charts, line plots,...
- Consider using tools like matplotlib, seaborn, or Plotly in Python for creating interactive visualizations

Feature Engineering

- Create new variables or transform existing ones to extract more information from the data
- Handle categorical variables through encoding or creating dummy variables

Dimensionality Reduction

 Use techniques like Principal Component Analysis (PCA) or t-Distributed Stochastic Neighbor Embedding (t-SNE) to reduce the dimensionality and visualize high-dimensional datasets

Statistical Testing

 Conduct hypothesis testing to validate assumptions or test for significant differences between groups

EXPLORATORY DATA ANALYSIS (EDA) EDA ON TEXTUAL DATA

- Word frequency analysis
 - \circ $\,$ Number of words in the text/corpus $\,$
 - Most frequently used words
 - Stop words frequency
 - N-gram exploration
 - Wordcloud
- Sentence/text length analysis
- Average word length analysis
- Topic modeling
- Sentiment analysis
- POS analysis

