
Constraint Satisfaction Problems (CSP)

CHAPTER III

Definition

Constraint Programming (CSP: Constraint Satisfaction Problems) is situated at the intersection of

Artificial Intelligence and Operations Research. It focuses on problems defined in terms of

constraints of time, space, etc. or more generally resources:

Applications :

• Planning and scheduling problems: planning production, managing rail traffic, etc.

• Resource allocation problems: establishing a timetable, allocating memory space and CPU time

(by an operating system), assigning persons to tasks, warehouses to goods, etc.

• Optimization problems: routing problems in telecommunications networks, ...

Constraint Satisfaction Problems (CSP)

Solving a CSP problem can be seen as a special case of heuristic search:

▪ The internal structure of the nodes has a particular representation:

• A node is a set of variables with corresponding values

• Transitions between nodes take into account constraints on the possible values of

variables

▪ We use general heuristics rather than application-specific heuristics:

• In a CSP problem We eliminate the difficulty of defining a specific heuristic h for our

application

Definition

Constraint Satisfaction Problems (CSP)

Example

▪ Resources allocation

• EXP: Establishing a timetable

• Variables: The different time slots for all premises (Classrooms,

Amphitheaters, Labs, …)

• Constraints: only one class is assigned to the same classroom at a given

time, no group has two classes at the same time,…

Constraint Satisfaction Problems (CSP)

Formal definition

▪ A finite set of variables V = {X1,…,XN}

• Each variable Xi has a domain Di of possible values

▪ A finite set of contraintes: C = {C1,…,CM}

▪ A state of a CSP problem is defined by an assignment of values {Xi=vi, Xj=vj, …}

• An assignment that does not violate any constraint is said to be consistent

• An assignment is said to be complete if it assigns values to all variables

• A CSP solution is a complete and consistent assignment

Constraint Satisfaction Problems (CSP)

Example 1

• Consider the following CSP problem:

• V = {X1,X2,X3}

• D1 = D2 = D3 = {1,2,3}

• Constraint: X1+X2 = X3

• Three possible solutions (Complete and Consistent assignments) :

• {X1=1, X2=1, X3=2}

• {X1=1, X2=2, X3=3}

• {X1=2, X2=1, X3=3}

Constraint Satisfaction Problems (CSP)

Example 2: Map coloring

▪ Consider the Australia map coloring problem:

• We have to use only three colors (Red, Green, Blue) so that two border states

never have the same colors

Constraint Satisfaction Problems (CSP)

• CSP Formularization :

• The variables are the states of Australia:

• V = {WA, NT, Q, NSW, V, SA, T}

• The domain of each variable is the set of three colors:

• D = {R, G, B}

• The constraint: Two border states have to be colored with different

colors:

• WA ≠ NT, WA ≠ SA, NT ≠ Q, …

Example 2 : Map coloring

Constraint Satisfaction Problems (CSP)

• Complete and consistent solution:

• WA = R, NT = G, SA = B, Q = R, NSW = G, V = R, T = G

Example 2: Map coloring

Constraint Satisfaction Problems (CSP)

Types of constraints

A constraint is characterized by its arity (number of variables it involves):

• Unary: Constraints only concern one variable.

• Binary: Constraints involve two variables.

• Multiple: Constraints involve 3 or more variables.

For problems with binary constraints, we can visualize the CSP problem by a constraint graph:

• The nodes are the variables (node = variable)

• Arcs are the constraints between two variables

Constraint Satisfaction Problems (CSP)

Depth-First Search for CSP

▪ Search parameters:

• A state is an assignment

• Initial state : empty assignment {}

• Transition function: assigns a value to a variable not yet assigned

• Goal function: Returns True if the assignment is complete and consistent

▪ This algorithm is general and can be applied to all CSP problems

▪ The solution must be complete (it appears at a depth N)

Constraint Satisfaction Problems (CSP)

▪ Limitations :

• Level 1 of the tree : N*D branches (each variable can take D values)

• Level 2 : (N-1)*D branches for each node (so on until level N)

• Result : N!*DN nodes for only DN complete assignments

▪ Solution 1 : Consider only one variable to assign at each level

▪ Solution 2 : Backtrack when no new consistent assignment is possible (no point

continuing to assign variables if there is already a constraint violation)

Solution 1 + Solution 2 = Backtracking search Algorithm

Depth-First Search for CSP

Constraint Satisfaction Problems (CSP)

Backtracking Search Algorithm
Algorithm Backtracking-search(csp)

Return Backtrack({},csp)

Backtrack(assignment,csp){

1. If assignment is complete, return assignment

2. Else X=Non-Assigned-Var(assignment,csp)

3. For each v in Ordered-Values(X,assignment,csp)

1. If consistent ((X=v), assignment, csp)

1. Add (X=v) to assignment

2. csp* = csp but where Domain(X, csp) is {v}

3. csp*, ok = Inference(csp*)

4. If ok = true

1. Result = Backtrack(assignment, csp*)

2. If Result ≠ false, return Result

5. Else Remove (X=v) from assignment

4. Return false

}

Variables, domains, constraints

Assignment of variables

Choosing the next variable

Order of values to try

Try to simplify the CSP problem

If it detects a conflict ok = false

Constraint Satisfaction Problems (CSP)

▪ The variables of our problem are instantiated with their domain values, in a specific order, until one of these

choices does not satisfy a constraint. In this case, we must question the last instantiation carried out. A new

value is tried for the last variable instantiated (which we call the current variable).

▪ If all the values in the domain of this variable have been tested without success, we must carry out a

backtrack: We choose another value for the variable immediately preceding the current variable. We repeat

this process until we obtain a solution (that is to say an instantiation of all the variables).

▪ If we have gone through the entire search tree without finding it, then we have proven that the problem has

no solution.

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

Description

▪ Illustration 1:

– Consider x1, x2 and x3 three variables,

– Consider D(x1) = D(x2) = D(x3) = {1, 2, 3} their domains.

– We put the following constraints: C1 = [x1< x2] and C2 = [x2 = x3].

– We assume that we instantiate the variables in ascending order of indices, by choosing the smallest

value first. x1 = 1

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

Failure: violation of C1

Failure: violation of C2

▪ Illustration 2:

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

Exercise 1:

• Consider the following CSP problem :

• V = {X1,X2,X3}

• D1 = D2 = D3 = {1,2,3}

• Constraint: X1+X2 = X3

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

Exercise 2:

We want to solve the 4-Queens problem using the Backtracking-Search

Algorithm:

- Trace the Backtracking–Search tree in order to find a solution

(We assume that we instantiate the variables in ascending order of indices, by

choosing the smallest value first.)

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

▪ Improvements:

▪ Filtering and propagation

▪ Use of general heuristics

• Choosing next variable (Non-Assigned-Var)

• Choosing next value to assign (Ordered-Value)

• Detect conflicting assignments and reduce domains (Inference)

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

▪ Filtering and propagation

• Delete the values of variables domains involved in a constraint (Avoid traversing
branches which cannot lead to a solution)

▪ Example

– Consider the variables X1, X2 and X3,

– Consider D(X1) = D(X2) = D(X3) = {1, 2, 3} their domains,

– Consider the constraints C1 = [X1 < X2] and C2 = [X2 = X3]

o Filtering: The value 3 can be deleted from D(X1), because there is no value in D(X2) such that C1 will be

satsified if We instantiate X1 by 3 (and then 1 can be deleted from the D(X2) with the same way)

o Propagation: Filtering 1 from D(X2) relatively to C1 can be propagated to D(X3): if the value 1 is no longer

belonging to X2, then it can be removed from D(X3) because there will not be any solution to C2 such that X3

is instantiated with 1.

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

▪ Heuristic 1: Choosing the order of variable assignment

▪ Minimum Remaining Value (MRV) heuristic

▪ At each step, choose the variable with the fewest remaining consistent values

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

▪ Heuristic 1: Choosing the order of variable assignment

▪ Minimum Remaining Value (MRV) heuristic

▪ Exercise: Use MRV to color the zones in the following shape:

▪ Constraint: Using only three colors (R,G,B), two neighboring zones never have

the same color.

▪ In case of conflict, choose by order of color indices and alphabetocal order of

zones.

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)
MRV

▪ Heuristic 1: Choosing the order of variable assignment

▪ Degree heuristic

▪ Choose the variable with the most constraints involving variables not yet

assigned (if the previous heuristic gives the same number of consistent values)

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

▪ Heuristic 2: Choosing next value to assign

▪ Least constraining value

Choose a value that invalidates the fewest possible values for variables not yet assigned

(Choose the value that will remove the fewest choices for neighboring variables)

Backtracking Search Algorithm

Constraint Satisfaction Problems (CSP)

Leaves a value for SA

Leaves no value for SA

Forward checking Algorithm

▪ Heuristic 3: Detect conflicting assigments

Forward checking:

▪ Before assigning a value v to a variable, check that v is consistent with the following variables,

i.e. that there exists at least one value for each following variable that is consistent with v.

(unlike backtrack, which checks that the value of the current variable is consistent with the

values assigned to previous variables).

1 2 3 4

1

2

3

4

Constraint Satisfaction Problems (CSP)

Algorithm Forward-Checking(X,csp)

For each Xk in neighbors(X,csp)

Changed, csp = Revise(Xk,X,csp)

if Changed and Domain(Xk,csp) is empty Then return(void,false)

else return(csp,true)

Revise(Xi,Xj,csp){ //reduce the domain of Xi depending of the domain of Xj

1. Changed = false

2. For each x in Domain(Xi,csp)

1. if no y in Domain(Xj,csp) satisfies constraint between Xi and Xj

1. Remove x from Domain(Xi,csp) //change the csp

2. Changed = true

3. Return(Changed,csp)

}

Forward checking Algorithm

Constraint Satisfaction Problems (CSP)

AC-3 Algorithm

▪ Forward checking propagates information from assigned variables to unassigned

variables, but it does not detect local conflicts between these variables:

▪ NT and SA can’t be blue together !

▪ AC-3 (Arc consistency) allows constraints to be checked locally by using constraint

propagation

Constraint Satisfaction Problems (CSP)

AC-3 Algorithm
▪ AC-3 :

▪ Check consistency between arcs (consistency of constraints between two variables)

▪ The arc X → Y is said to be consistent only if : For each value x of X there exists at least a

permitted value y of Y

If a variable loses a value, its neighbors must be rechecked

Constraint Satisfaction Problems (CSP)

Local search

Local search principle

▪ The path to the solution is unimportant (e.g.: hill-climbing)

▪ We can work with states which are complete assignments (consistent or not)

▪ Disadvantage: can fall into local optima

▪ Min-conflicts algorithm

▪ Objective function: minimize the number of conflicts

▪ Looks like hill-climbing but uses stochasticity

Constraint Satisfaction Problems (CSP)

Min-conflicts Algorithm

Algorithm Min-conflicts(csp, nb_iterations)

Assignment = a random complete assignment (probably not consistent) of csp

For i = 1 to nb_iterations

1. If assignment is consistent Then return assignment

2. Else X = variable choosen randomly in Variable(csp)

3. v = value in Domain(X,csp) satisfying the most constraints of X

4. Assign (X = v) in assignment

Return false

▪ Min-conflicts : - Can solve the problem of 1.000.000 Queens in 50 steps

 - Plan Hubble Telescope observations in 10 minutes instead of 3 weeks

Reason for success: there are several possible solutions (scattered) in the space of states

Constraint Satisfaction Problems (CSP)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

