
1

Search Algorithms and Problem-Solving

CHAPTER II

2

Solving a problem

▪ Intuitive steps by a human

• Model the current situation

• List possible solutions

• Evaluate the value of each solution

• Select the best option satisfying the goal

▪ How to efficiently browse the list of solutions ?

▪ Several problems con be solved by searching in a graph :

• Each node represents a state of the environment

• Each path through a graph represents a sequence of actions

• The solution: simply look for the path that best satisfies our performance measurement

3

Problem-Solving

Example: Path-finding in a town

Find the best path between the 9th ave – 50th street to the 3rd ave -51st street

4

Problem-Solving

Example: Google Maps

5

Problem-Solving

Example: Package delivery
Initial state Goal

6

Initial state Goal

Problem-Solving

Example: Chess game

7

Initial state Goal

Problem-Solving

Example: N-Puzzle

Up Up Left Down Right

8

Problem-Solving

Graph search problem
▪ Input:

• Initial node

• Goal function Goal(n) which returns True if the goal is achieved

• Transition function Transition(n) which returns the successor nodes of n

• Cost function c(n,n’) strictly positive, which returns the cost of going from n to n’

▪ Output:

• A path in the graph (nodes and edges)

o The path cost is the sum of all the edges cost in the graph

o There can be several goal nodes

➢ Challenges:

• Find a solution path

• Find an optimal path

• Quickly find a path (in this case the optimality is not important)

9

Problem-Solving

A real world example: Find a path
between tow cities

• Cities: Nodes

• Paths between two cities: Edges

• Starting city: Initial node n0

• Roads between cities: Transition(n0) = (n3, n2, n1)

• Distance between cities: c(n0,n2) = 4

• Destination city: Goal(n) = True if n = n6 (n6 is the destination city)

10

Search algorithm : Breadth-First Search

➢ For a given node, explore the sibling nodes before exploring their children.

11

Search algorithm : Depth-First Search

➢ For a given node, explore the first child node before exploring the sibling nodes.

12

Heuristic-Based Search Algorithms

Best-First Search

1. Start the search by a List containing the starting state (initial node) of the problem

2. If List not empty:

 - Select a state n with minimal measure to expand

 - If n is a final state (Goal node) then return Success

 - Else, add all n successor nodes to the List with respect of ascending order according

 to the utility measure.

 - Restart at point 2.

3. Else return Failure.

13

- The utility measure is given by an estimation function h.

- For each state n, h(n) represents the estimated cost from n to a final state.

For example, in the problem of the shortest path between two cities,

we can take h(n) = direct distance between n and the destination city.

- Greedy search will choose the state that seems closest to a final state

according to the estimation function h.

Heuristic-Based Search Algorithms

Greedy Best-First Search

5

9

22

2
3

0

h(n0)

c(n0 ,n1)

Open List :

- (n0,9,void)

- (n2,2,n0), (n1,2,n0), (n3,5,n0)

- (n1,2,n0), (n4,3,n2), (n3,5,n0)

- (n5,2,n1), (n4,3,n2), (n3,5,n0)

- (n6,0,n5), (n4,3,n2), (n3,5,n0)

Path : n0 → n1 → n5 → n6

Greedy Best-First Search

15

- The utility measure is given by an evaluation function f

- For each node n: f(n) = g(n) + h(n)

o g(n) Is the cost till present to get n

o h(n) Is the estimated cost to go from n to the goal node.

o f(n) Is the total estimated cost to go from the initial node to the goal node going

through n

Heuristic-Based Search Algorithms

A* Search

h is said to be admissible if for all n: h(n) ≤ c(n)

c(n) being the real cost leading from n to the final state

16

A* Search Algorithm

1. Declare two nodes n, ns

2. Declare two lists Open and Closed (initially empty)

3. Add initial node to Open

4. If Open is empty Then Exit the loop with a failure

5. Current node n = node at the head of Open

6. Remove n from Open and add it to Closed.

7. If n= goal Then Exit the loop and return the path

 Else : For each successor ns of n:

 - Initilize the value g(ns) = g(n) + c(n,ns)

 - Set parent of ns to n

 - If Open or Closed contains a node ns’=ns with f(ns) f(ns’)

 Then remove ns’ from Open or Closed and insert ns into Open (with respect to the ascending order of f)

 Else : Insert ns into Open (with respect to the ascending order of f)

 - Go to 4.

17

Illustrative example: Path-Finding between two cities

n0 : Departure city (initial node)

n6 : Destination city(goal node)

h : Direct distance between a city and the destination city (heuristic)

c : Real distance between two cities

5

9

22

2
3

0

h(n0)

c(n0 ,n1)

A* Search Algorithm

18

5

9

22

23

0

Illustrative example: Path-Finding between two cities

A* Search Algorithm

State of Open in each iteration

(State, f, Parent)

State of Closed in each iteration

(State, f, Parent)

Exercise
We consider the following map. The objective is to find the optimal path between A and I. We also give two
heuristics h1 and h2:

Find the optimal (we minimize) path using the following algorithms:
1. Greedy Best-First Search using h2 as heuristic function
2. A* Search using h1

Node

Local search

Motivations
Reminder of the advantages of A*:

▪ As input, we have a function (goal(n)) identifying the goal node
▪ The solution is an optimal path and not only a final state
▪ Visited nodes are all stored to avoid revisiting them

Disadvantages: Memory space is too large (in order to save all the visited nodes)

Characteristics of a local search:

o Definition of an objective function to be optimized (e.g. a goal function which identifies a final node)

o The solution sought is just an optimal node (or close to it) and not the path that leads to the goal

o No need to save all visited states

Example: N-Queens
○ Problem:

▪ Place N queens on a chessboard of size N×N so that two queens do not attack each
other (Never position two queens on the same diagonal, row or column)

Objective function
Minimize the number of
queens that attack each
other

Local search

Principle

➢ Local search keeps only some visited nodes in the memory:

▪ Hill-Climbing: a simple case which just keeps a (current) node in memory and iteratively

improves it until it converges to a solution.

▪ Genetic algorithm: a more elaborate case which keeps a set of nodes (population) and

evolves it until finding a solution

Local search

Local search objective
In general, there is an objective function to optimize (minimize or maximize)

▪ Hill-Climbing: the objective function allows to find the next visited node.

▪ Genetic algorithm: the objective function or fitness function is involved in
the calculation of all the successor nodes of the current set.

➢ Local search does not guarantee an optimal solution but it has the
capacity to find an acceptable solution quickly.

Local search

Hill-Climbing
➢ Input:
▪ Initial node
▪ Objective function F(n) to optimize
▪ A function that generates successor nodes (neighbors)

➢ Procedure:
▪ The current node is initialized to the initial node
▪ Iterativelly, the current node is compared to its immediates successors (Neighbors):

• The best neighbor n’ having the highest value of F(n’) such as F(n’)>F(n) will be the
current node.

• If such a neighbor does not exist, we stop and return the current node as a solution.

Local search

Hill-Climbing

Local search

Algorithm HILL-CLIMBING(InitialNode) //This version maximizes

1. Declare two nodes: n, n’

2. n = initial node

3. While(1): //The exit criteria will be detrmined in the loop

1. n’=Successor node of n having the highest value F(n’)

2. If F(n’)≤F(n) //If we minimize, the test will be F(n’)≥F(n)

1. Return n //We couldn’t improve F(n)

3. Else n = n’ (Go to 3)

Objective: Trying to get to the top of a hill in a foggy environment

Hill-Climbing: Illustration

Local search

Consider the following objective function, defined for integers from 1 to 16

Hill-Climbing: Illustration

Local search

➢ What value of n Hill-Climbing will find if the initial value of n is 6 and the used successors
are n-1 (only if n>1) and n+1 (only if n<16)

Execution :
Initial node: n = 6

?

Solution: Browsed values

6 → 7

Hill-Climbing: Illustration

Local search

Execution :
Initial node: n = 6

?

Solution: Browsed values

6 → 7 → 8

Hill-Climbing: Illustration

Local search

Execution :
Initial node: n = 6

?

Solution: Browsed values

6 → 7 → 8 → 9

Hill-Climbing: Illustration

Local search

Execution :
Initial node: n = 6

?

Solution: Browsed values

6 → 7 → 8 → 9 → 10

Hill-Climbing: Illustration

Local search

Execution :
Initial node: n = 6

?

Solution: Browsed values

6 → 7 → 8 → 9 → 10 → 11

Hill-Climbing: Illustration

Local search

Execution :
Initial node: n = 6

?

Solution: Browsed values

6 → 7 → 8 → 9 → 10 → 11 → 12

Hill-Climbing: Illustration

Local search

Execution :
Initial node: n = 6

?

Solution: Browsed values

6 → 7 → 8 → 9 → 10 → 11 → 12
Hill-Climbing stops and returns n = 12

Hill-Climbing: Illustration

Local search

n=[5 6 7 4 5 6 7 6]

Hill-Climbing: N-Queens

Local search

▪ n: Configuration of the chessboard with N queens
▪ F(n): Number of pairs of queens that attack each

other directly or indirectly in the current
configuration n

▪ We want to minimize

▪ F(n) for the displayed state is: 17
▪ Framed cells are the best successors, if we move

a queen in its column

Hill-Climbing: 8-Queens

Local search

▪ An example of a local minimum with F(n)=1

3 1 2

4 5 8

6 7

1 2

3 4 5

6 7 8
Initial state Goal state

F(n): Number of misplaced digits

Hill-Climbing: 3-Puzzle

Local search

Exercise 1:

4 1 2

3 5

6 7 8

1 2

3 4 5

6 7 8
Initial state Goal state

Hill-Climbing: 3-Puzzle

Local search

Exercise 2:
F(n): Number of misplaced digits

Simulated Annealing

▪ Improved version of Hill-Climbing (minimize the risk of being stuck in a
local optimal)

o Look for a less good immediate neighbor of the current node (with certain

probability) instead of looking for a better immediate neighbor,

o The probability of taking a less good neighbor is higher at the beginning then it

gradually decreases,

▪ The number of iterations and the decrease in probabilities are defined
using a temperature schedule in descending order.

o Example: Schedule of 100 iterations [2-0, 2-1, 2-2,.., 2-99]

Local search

Algorithm SIMULATED-ANNEALING(InitialNode, Schedule) //This version maximizes

1. Declare two nodes: n, n’

2. n = initial node

3. For t = 1 .. Size(Schedule):

1. T = Schedule[t] //Temprature at the instant t

2. n’ = a successor of n (selected randomly)

3. ∆E = F(n’) - F(n) //if we minimize, ∆E = F(n) - F(n’)

4. If ∆E > 0 Then assign n = n’ //improvement compared with n

5. Else assign n = n’ only with a probability of e∆E/T

4. Return n
The smaller T is, the smaller
probability e∆E/T will be.

Simulated Annealing

Local search

Improvement of Simulated Annealing

▪ Simulated annealing minimizes the risk of being trapped in local optima but it does not
eliminate the risk of oscillating indefinitely by returning to a previously visited node.

▪ Solution1: Tabu search Algorithm

o Save the k last visited nodes (Tabu set)

▪ Solution 2: Beam search Algorithm

➢ Instead of maintaining a single solution node, we could maintain k different nodes
(Beam):

o Start with k nodes chosen randomly

o At each iteration, generate all the successors of the k chosen nodes

o Choose the k best nodes from the generated nodes and start again

Local search

Genetic Algorithms

Origin

▪ Inspired by the process of natural evolution of species:

▪ Human intelligence is the result of a process of evolution over
millions of years:

• Theory of evolution (Darwin)

• Theory of natural selection (Weismann)

• Genetic concepts (Mendel)

▪ Simulating evolution doesn't need to last millions of years on a
computer

Local search

Principle

▪ We start with a set of k nodes chosen randomly: this set is called
population.

▪ A successor is generated by combining two parents.

▪ A node is represented by a string (word) on an alphabet: it is the genetic
code of a node.

▪ The objective function is called fitness function.

▪ The next generation is produced by:

(1)Selection → (2)Cross-Over → (3)Mutation

Genetic Algorithms

Local search

Representation

▪ We represent the solution space of a problem by a population (set of
chromosomes).

• A chromosome is a string of characters (genes) of fixed size. For
example: 101101001

• A population generates children by a set of simple procedures that
manipulate chromosomes:

o Parents Cross-Over

o Mutation of a generated child

▪ The children are kept according to their adaptation (fitness) determined by
an adaptation function F(n)

Genetic Algorithms

Local search

Algorithm GENETIC-ALGORITHM(k, nb_iterations) //This version maximizes

1. Population = set {n1, n2, n3, …, nk} of k chromosomes generated randomly

2. For t = 1…nb_iterations:

1. New_population = {}

2. For i = 1… k:

1. n = chromosome selected form Population with a higher probability relatively to F(n)

2. n’ = a different chromosome selected from Population – {n} with the same way as n

3. n* = result of Cross-Over between n and n’

4. With a small probability, apply a mutatation to n*

5. Add n* to New_population

3. Population = New_population

3. Return n in Population with the highest value of F(n)

Genetic Algorithms

Local search

Example of Cross-Over : 8-Queens

Genetic Algorithms

Local search

8-Queens

▪ Adaptation function : Number of queens that do not attack each other (min=0, max=28).

▪ Probability of selection of the first chromosome (proportional to the adaptation) :

➢ 24/(24+23+20+11) = 31%
➢ 23/(24+23+20+11) = 29%

➢ 20/(24+23+20+11) = 26%

➢ 11/(24+23+20+11) = 14%

Genetic Algorithms

Local search

Adversary games

Towards adversary search

▪ Is it possible to use A* in two-player games ?
✓ We could define a state for the game (Chess: position of all pieces in the chessboard)

✓ The goal state is the configuration of the board such that a player wins the game

× What would be the transition function ?

▪ Yes, but not directly (go through intermediate goal states)
▪ Multi-agent environment (the opposing player can modify the state of the environment)

Types of games

▪ Cooperative game
• All the players want to achieve the same goal

▪ Adversary game
• The players are competing

• A win for some is a defeat for the others (or a draw)

• Special case : Zero-sum game

▪ Examples: Chess, Tic-Tac-Toe,..

We assume : - Games with two opponents who take turns

 - Zero-sum-game

 - Detrministic and fully observable environment

Adversary games

Two-player games

MiniMax Algorithm

▪ Two players : Max vs Min

▪ Max is the first to play

▪ We consider the result of a game as a reward distributed to the player

Max

• Max tries to maximize the reward

• Min tries to minimize the Max’s reward

▪ The problem to solve is seen as a tree-search problem

• An Initial node (initial configuration of the game)

• A transition function that retourns pairs (action, successor nodes)

• A termination test (indicates if the game is over)

• Utility function for the final states (Reward received by Max)

Two-player games

MiniMax Algorithm

Tic-Tac-Toe Search tree

Two-player games

▪ We assume that the most profitable action for Max or Min is taken (obtain the greatest

MiniMax value)

▪ The calculation of the minimax values for all the nodes of the search tree is done

using a recursive program

Two-player games

MiniMax Algorithm

𝑴𝑰𝑵𝑰𝑴𝑨𝑿_𝑽𝑨𝑳𝑼𝑬 𝒏 = ൞

𝑼𝑻𝑰𝑳𝑰𝑻𝒀 𝒏 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒

𝒎𝒂𝒙𝑛′𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑛 𝑴𝑰𝑵𝑰𝑴𝑨𝑿_𝑽𝑨𝑳𝑼𝑬 𝒏′ 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑀𝑎𝑥 𝑛𝑜𝑑𝑒

𝒎𝒊𝒏𝑛′𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝑛 𝑴𝑰𝑵𝑰𝑴𝑨𝑿_𝑽𝑨𝑳𝑼𝑬 𝒏′ 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑀𝑖𝑛 𝑛𝑜𝑑𝑒

Algorithm MiniMax(initial node)

- Return the action chosen by TURN-MAX(initial node)

TURN-MAX(n){

1. If n corresponds to an end of game Then return the utility value UTILITY(n)

2. U=-∞ , a=void

3. For Each pair(a’, n’) given by TRANSITION(n):

- If the utilility of TURN-MIN(n’) > u Then assign a=a’ , u=utility of TURN-MIN(n’)

 Else Return the utility u and the action a }

TURN-MIN(n){

1. If n corresponds to an end of game Then return the utility value UTILITY(n)

2. U=+∞ , a=void

3. For Each pair(a’, n’) given by TRANSITION(n):

- If the utility of TURN-MAX(n’) < u Then assign a=a’ , u=utility of TURN-MAX(n’)

 Else Return the utility u and the action a}

Two-player games

MiniMax Algorithm

We choose the node with the greatest value

For each of these nodes We give the min of the child nodes

For each of these nodes We give the max of the child nodes

For each of these nodes We give the min of the child nodes

For each of these nodes We calculate the utility U

Two-player games

MiniMax Algorithm / Game Tree

MAX move

MIN move

MIN node

MAX node

108512 10 53 13 2 11+∞

MAX

MIN

MAX

Two-player games

MiniMax Algorithm / Illustration

5

108512 10 53 13 2 11+∞

3 25

MAX

MIN

MAX

MIN MIN MIN

MAX

Minimax = 5

Two-player games

MiniMax Algorithm / Illustration

▪ Time complexity = O(bm)

- b : maximum number of choices by move (choices or actions) in each step (branching factor)

- m : maximum number of moves in a game (number of levels in a DFS search)

▪ Space complexity = O(bm)

Chess game:

Number of choices per move: 35 (b ≈ 35)

Average number of moves for each player: 50 (m ≈ 100)

Two-player games

MiniMax Algorithm / Complexity

▪ MINIMAX : Evaluation of positions after generation of the tree (Expand all leaf nodes to a

limiting depth)

▪ Idea : Evaluation to the leaf nodes and propagation to the ancestors when the tree is

generated (Alpha-Beta Pruning)):

➢A leaf node is evaluated once produced.

➢ Identify the paths (in the tree) which are explored unnecessarily (know if a leaf node

is uninteresting)

Two-player games

Alpha-Beta Pruning

Algorithm Alpha-Beta-Pruning(initial node)

- Return the action chosen by TURN-MAX(initial node, -∞ , +∞)

TURN-MAX(n,𝜶, 𝜷) {

1. If n corresponds to an end of game Then return the utility value UTILITY(n)

2. U=-∞ , a=void

3. For Each pair(a’, n’) given by TRANSITION(n)

- If the utilility of TURN-MIN(n’, 𝜶, 𝜷) > U Then assign a=a’ , U=utility of TURN-MIN(n’ , 𝜶, 𝜷)

 If U ≥ 𝜷 Return the utility U and the action a

 Else 𝜶 = Max (𝜶 , U)

4. Return the utility U and the action a,

}

TURN-MIN(n,𝜶, 𝜷) {

1. If n corresponds to an end of game Then return the utility value UTILITY(n)

2. U=+∞ , a=void

3. For each pair(a’, n’) given by TRANSITION(n)

- If the utility of TURN-MAX(n’, 𝜶, 𝜷) < U Then assign a=a’ , U=utility of TURN-MAX(n’ , 𝜶, 𝜷)

 If U ≤ 𝜶 Return the utility U and the action a

 Else 𝜷 = Min (𝜷 , U)

4. Return the utility U and the action a,

}

Alpha-Beta Cut-Off

Two-player games

Cut-Off Principle:
▪ We add the parameters 𝛼 𝑎𝑛𝑑 𝛽 (initially −∞ 𝑎𝑛𝑑 + ∞)

▪ The cut nodes (pruned) are those such that 𝑢(𝑛) ∈ 𝛼, 𝛽 𝑎𝑛𝑑 𝛼 ≥ 𝛽
▪ The uncut nodes are those such that:

𝜶, 𝜷 = ൞

−∞, +∞ 𝒐𝒓

−∞, 𝒃 𝑤𝑖𝑡ℎ 𝒃 ≠ +∞ 𝒐𝒓

𝒂, +∞ 𝑤𝑖𝑡ℎ 𝒂 ≠ −∞

5

4

MAX

Coupure 𝛼

4

5

MIN

Coupure 𝛽

Alpha-Beta Cut-Off

Two-player games

5 4

4

MAX

Coupure 𝛼

4

5

MIN

Coupure 𝛽

MIN

Alpha-Beta Cut-Off

Two-player games

Cut-Off Principle:
▪ We add the parameters 𝛼 𝑎𝑛𝑑 𝛽 (initially −∞ 𝑎𝑛𝑑 + ∞)

▪ The cut nodes (pruned) are those such that 𝑢(𝑛) ∈ 𝛼, 𝛽 𝑎𝑛𝑑 𝛼 ≥ 𝛽
▪ The uncut nodes are those such that:

𝜶, 𝜷 = ൞

−∞, +∞ 𝒐𝒓

−∞, 𝒃 𝑤𝑖𝑡ℎ 𝒃 ≠ +∞ 𝒐𝒓

𝒂, +∞ 𝑤𝑖𝑡ℎ 𝒂 ≠ −∞

5

5 4

4

MAX

Coupure 𝛼

4

5

MIN

Coupure 𝛽

MAX

×

Alpha-Beta Cut-Off

Two-player games

Cut-Off Principle:
▪ We add the parameters 𝛼 𝑎𝑛𝑑 𝛽 (initially −∞ 𝑎𝑛𝑑 + ∞)

▪ The cut nodes (pruned) are those such that 𝑢(𝑛) ∈ 𝛼, 𝛽 𝑎𝑛𝑑 𝛼 ≥ 𝛽
▪ The uncut nodes are those such that:

𝜶, 𝜷 = ൞

−∞, +∞ 𝒐𝒓

−∞, 𝒃 𝑤𝑖𝑡ℎ 𝒃 ≠ +∞ 𝒐𝒓

𝒂, +∞ 𝑤𝑖𝑡ℎ 𝒂 ≠ −∞

5

5 4

4

MAX

Coupure 𝛼

4 5

5

MIN

Coupure 𝛽

MAX

Alpha-Beta Cut-Off

Two-player games

Cut-Off Principle:
▪ We add the parameters 𝛼 𝑎𝑛𝑑 𝛽 (initially −∞ 𝑎𝑛𝑑 + ∞)

▪ The cut nodes (pruned) are those such that 𝑢(𝑛) ∈ 𝛼, 𝛽 𝑎𝑛𝑑 𝛼 ≥ 𝛽
▪ The uncut nodes are those such that:

𝜶, 𝜷 = ൞

−∞, +∞ 𝒐𝒓

−∞, 𝒃 𝑤𝑖𝑡ℎ 𝒃 ≠ +∞ 𝒐𝒓

𝒂, +∞ 𝑤𝑖𝑡ℎ 𝒂 ≠ −∞

5

4

MAX

Coupure 𝛼

4

4 5

5

MIN

Coupure 𝛽

MIN

×

Alpha-Beta Cut-Off

Two-player games

Cut-Off Principle:
▪ We add the parameters 𝛼 𝑎𝑛𝑑 𝛽 (initially −∞ 𝑎𝑛𝑑 + ∞)

▪ The cut nodes (pruned) are those such that 𝑢(𝑛) ∈ 𝛼, 𝛽 𝑎𝑛𝑑 𝛼 ≥ 𝛽
▪ The uncut nodes are those such that:

𝜶, 𝜷 = ൞

−∞, +∞ 𝒐𝒓

−∞, 𝒃 𝑤𝑖𝑡ℎ 𝒃 ≠ +∞ 𝒐𝒓

𝒂, +∞ 𝑤𝑖𝑡ℎ 𝒂 ≠ −∞

12 10 53

𝛼, 𝛽 = −∞, +∞

Alpha-Beta Cut-Off

Two-player games

12 10 53

3

𝛼, 𝛽 = [3, +∞]

MIN

Alpha-Beta Cut-Off

Two-player games

108512 10 53

3

𝛼, 𝛽 = [3, +∞]

Alpha-Beta Cut-Off

Two-player games

108512 10 53

3 5

𝛼, 𝛽 = 5, +∞

MIN

Alpha-Beta Cut-Off

Two-player games

108512 10 53

3 5

𝛼, 𝛽 = 5, +∞

13 2

Alpha-Beta Cut-Off

Two-player games

108512 10 53

3 25

𝛼, 𝛽 = 5, +∞

13 2

MIN

Alpha-Beta Cut-Off

Two-player games

108512 10 53

3 25

𝛼, 𝛽 = 5, +∞

13 2

MIN
× ×

Alpha-Beta Cut-Off

Two-player games

1085

5

12 10 53

3 25

𝛼, 𝛽 = 5, +∞

13 2

× ×

MAX

Minimax = 5

Alpha-Beta Cut-Off

Two-player games

3 12 8 2 13 4 14 5 2

MinMax Alpha-Beta Cut-Off

Two-player games

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

