

Series of Exercises 03

Relativistic Dynamics

Data: 1u.m. a = 1.660538921 × 10⁻²⁷[kg]; $m_p = 1.0073u$; $m_n = 1.0087u$; $m_e = 5.489 \times 10^{-4}u$; c = 299792458[m. s^{-1}]

Exercise 01:

Calculate the necessary speed (as a fraction of light celerity c) of an accelerated electron in laboratory, to make it see its own mass grown by a factor γ as shown in the following table:

γ	2	5	10	20	100	500	1000	2000
$\beta = v/c$								

Exercise 02:

1. For a given high energy particle $(E \gg E_0)$, show that its momentum could be given by the following expression:

$$pc = E\left(1 - \frac{1}{2}\left(\frac{E_0}{E}\right)^2\right)$$

2. Examine the case of an accelerated electron reaching the following energies (MeV): 1.022; 5.11; 51.1

Exercise 03:

Calculate the momentum of a proton with a kinetic energy given by T = 200 MeV.

Exercise 04:

What is the ratio m/m_0 for:

- (a) Electron
- (b) Proton

When it is accelerated from the rest to reach a kinetic energy of 15 MeV?

Exercise 05:

- 1. Show that we can write the velocity vector of a given particle as: $\vec{v} = \frac{c^2}{F}\vec{p}$
- 2. Show that the magnitude of this velocity could be given by: v = dE/dp

Exercise 06:

- 1. Calculate the rest energy of the atomic mass unit $m_0 = 1u. m. a$
- 2. A particle with a total energy of 5GeV, has a momentum $p_1c = 3GeV$ in a first frame. What is its energy in a second frame in which $p_2c = 4GeV$?
- 3. What is the rest mass of this particle?
- 4. Deduce its kinetic energy in both frames.

Exercise 07:

For an accelerated electron under a potential difference $\Delta U = 2 \times 10^6 V$; calculate its speed by using both classical and relativistic expressions. Comment.

Exercise 08:

Consider a particle with a momentum $p = m_0 c$.

- 1. Calculate its velocity.
- 2. Calculate its mass.
- 3. Calculate its kinetic energy

Exercise 09:

The nucleus of deuterium ${}_{1}^{2}H$ is made from one proton and one neutron. Its rest mass is $m_{D} = 2.01375u$.

- 1. Compare this mass to the sum $m_p + m_n$.
- 2. What is this difference in terms of energy equivalent?
- 3. What did this difference represent (in %) compared to the rest mass of the deuterium?
- 4. What did this difference represent physically for the ${}_{1}^{2}H$ nucleus?

Exercise 10:

The solar radiations reach the surface of Earth with an average power of $1.34 \times 10^3 [W. m^{-2}]$. Knowing that the average distance Sun-Earth is $R = 1.49 \times 10^{11} m$ and the rest mass of the sun is estimated to be $M_S = 2 \times 10^{30} kg$.

Find the rate in which the Sun lose its rest mass due to emitted radiations.