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Chapter 03

Propagation of  EM Waves in free space 



I. Differential equation of the wave

We call the 2nd order differential equation of

the following form (1D space):

𝝏𝟐

𝝏𝒙𝟐
𝑭 𝒙, 𝒕 − 𝜶

𝝏𝟐

𝝏𝒕𝟐
𝑭(𝒙, 𝒕) = 𝟎

the wave’s equation, and the function 𝑭(𝒙, 𝒕)

verifying this equation (solution of the

equation) is called the wave function.

The unit homogeneity implies that:

𝜶 𝒔𝟐. 𝒎−𝟐 →
𝟏

𝜶
𝒎𝟐. 𝒔−𝟐 ≡ 𝒗

𝒎

𝒔

𝟐

This allows to rewrite the wave’s equation:
𝝏𝟐

𝝏𝒙𝟐
𝑭 𝒙, 𝒕 −

𝟏

𝒗𝟐

𝝏𝟐

𝝏𝒕𝟐
𝑭(𝒙, 𝒕) = 𝟎

In 3D space, the wave’s equation can be

generalized:

∆𝑭 𝒙, 𝒚, 𝒛, 𝒕 −
𝟏

𝒗𝟐

𝝏𝟐

𝝏𝒕𝟐
𝑭(𝒙, 𝒚, 𝒛, 𝒕) = 𝟎

With: ∆=
𝝏𝟐

𝝏𝒙𝟐+
𝝏𝟐

𝝏𝒚𝟐+
𝝏𝟐

𝝏𝒛𝟐

In this case, the propagation velocity could be

given as 3D vector:

𝒗 = 𝒗𝒙Ԧ𝒊 + 𝒗𝒚 Ԧ𝒋 + 𝒗𝒛𝒌

One can deduce that 𝒗 represent the

propagation velocity of the wave.



Let’s focus on the 1D space equation:

𝝏𝟐

𝝏𝒙𝟐
𝑭 𝒙, 𝒕 − 𝜶

𝝏𝟐

𝝏𝒕𝟐
𝑭(𝒙, 𝒕) = 𝟎

We can recognize the difference of two squares

identity: 𝒂𝟐 − 𝒃𝟐 = 𝒂 − 𝒃 . 𝒂 + 𝒃 in the

differential operator:

𝝏𝟐

𝝏𝒙𝟐
−

𝟏

𝒗𝟐

𝝏𝟐

𝝏𝒕𝟐
𝑭 𝒙, 𝒕 =

𝝏

𝝏𝒙
−

𝟏

𝒗

𝝏

𝝏𝒕
.

𝝏

𝝏𝒙
+

𝟏

𝒗

𝝏

𝝏𝒕
𝑭 𝒙 = 𝟎

Consequently, a variable change could be

performed here.

The following variable change is considered:

ቊ
𝑿 𝒙, 𝒕 = 𝒙 − 𝒗𝒕
𝒀 𝒙, 𝒕 = 𝒙 + 𝒗𝒕

ቊ
𝟐𝒙 = 𝑿 + 𝒀 
𝟐𝒗𝒕 = 𝒀 − 𝑿

Using the fact that:

𝝏

𝝏𝑿
=

𝝏𝒙

𝝏𝑿

𝝏

𝝏𝒙
+

𝝏𝒕

𝝏𝑿

𝝏

𝝏𝒕

𝝏

𝝏𝒀
=

𝝏𝒙

𝝏𝒀

𝝏

𝝏𝒙
+

𝝏𝒕

𝝏𝒀

𝝏

𝝏𝒕

Which leads to:

𝝏

𝝏𝒙
−

𝟏

𝒗

𝝏

𝝏𝒕
= 𝟐

𝝏

𝝏𝑿
 ;

𝝏

𝝏𝒙
+

𝟏

𝒗

𝝏

𝝏𝒕
= 𝟐

𝝏

𝝏𝒀

Which leads to the new form of the differential

equation:

𝝏

𝝏𝑿

𝝏

𝝏𝒀
𝑭 𝑿, 𝒀 = 𝟎

Supporting a solution of the type:

𝑭 𝑿, 𝒀 = 𝑨 𝑿 + 𝑩(𝒀)

II. Solution of the wave’s equation



The wave’s function could be written with

original variables 𝒙 and 𝒕:

𝑭 𝒙, 𝒕 = 𝑨 𝒙 − 𝒗𝒕 + 𝑩(𝒙 + 𝒗𝒕)

Indicating that both solutions:

• 𝑨: represent propagation in +𝒗 direction

• B: represent propagation in −𝒗 direction

Besides that, A and B functions should be

periodic functions to satisfy the 2nd order

differential equation of the wave:

𝑨 𝒙, 𝒕 = 𝒂𝟏. 𝒔𝒊𝒏 𝒙 − 𝒗𝒕 + 𝒂𝟐. 𝒄𝒐𝒔 𝒙 − 𝒗𝒕

𝑩 𝒙, 𝒕 = 𝒃𝟏. 𝒔𝒊𝒏 𝒙 + 𝒗𝒕 + 𝒃𝟐. 𝒄𝒐𝒔 𝒙 + 𝒗𝒕

The coefficients 𝒂𝒊 and 𝒃𝒊 could be determined

by initial and boundary conditions.

In the simplest case of 1D space, the

propagating wave in the +𝒙 direction, then

only the function 𝑨(𝒙 − 𝒗𝒕) is considered

(𝒃𝟏 = 𝒃𝟐 = 𝟎).

Besides that, if we consider at 𝒕 = 𝟎 and 𝒙 = 𝟎

position we have: 𝑨 𝟎, 𝟎 = 𝟎, We can deduce

easily that the solution is of the form 𝒂𝟐 = 𝟎 :

𝑨 𝒙, 𝒕 = 𝒂𝟏. 𝒔𝒊𝒏 𝒙 − 𝒗𝒕

This corresponds to a sinusoidal function with

an amplitude 𝒂𝟏.

II. Solution of the wave’s equation



Let’s consider the general set of Maxwell’s

equations for a given medium characterized

with an electric permittivity 𝜺 and magnetic

permeability 𝝁:

𝛁. 𝑬 =
𝝆

𝜺
 (𝑰)

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
 (𝑰𝑰)

𝛁. 𝑩 = 𝟎 (𝑰𝑰𝑰)

𝛁 ∧ 𝑩 = 𝝁Ԧ𝑱 + 𝝁𝜺
𝝏𝑬

𝝏𝒕
 (𝑰𝑽)

By applying the following rule on (II) and (IV):

𝜵 ∧ 𝜵 ∧ 𝑨 = 𝜵 𝜵. 𝑨 − ∆𝑨

From (II) we get:

𝜵 ∧ 𝜵 ∧ 𝑬 = 𝜵 𝜵. 𝑬 − ∆𝑬

𝜵 ∧ −
𝝏𝑩

𝝏𝒕
= 𝜵

𝝆

𝜺
− ∆𝑬

−
𝝏

𝝏𝒕
𝜵 ∧ 𝑩 = 𝜵

𝝆

𝜺
− ∆𝑬

−
𝝏

𝝏𝒕
𝝁Ԧ𝑱 + 𝝁𝜺

𝝏𝑬

𝝏𝒕
= 𝜵

𝝆

𝜺
− ∆𝑬

∆𝑬 − 𝝁𝜺
𝝏𝟐𝑬

𝝏𝒕𝟐
− 𝝁

𝝏

𝝏𝒕
Ԧ𝑱 = 𝜵

𝝆

𝜺
Since Ԧ𝒋 = 𝝈𝑬:

∆𝑬 − 𝝁𝜺
𝝏𝟐𝑬

𝝏𝒕𝟐
− 𝝁𝝈

𝝏

𝝏𝒕
𝑬 =

𝟏

𝜺
𝜵𝝆 (𝑬𝒒. 𝟑. 𝟏)

III. Derivation of E.M wave’s equations



From (IV) one can also derive the following

equation in the same way:

∆𝑩 − 𝝁𝜺
𝝏𝟐𝑩

𝝏𝒕𝟐
− 𝝁𝝈

𝝏𝑩

𝝏𝒕
= 𝟎 (𝑬𝒒. 𝟑. 𝟐)

Finally, we will get the following system of 2nd

degree differential equations:

ด∆𝑬
𝑺𝒑𝒂𝒕.𝒗𝒂𝒓.

− 𝝁𝜺
𝝏𝟐𝑬

𝝏𝒕𝟐

𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏

− 𝝁𝝈
𝝏

𝝏𝒕
𝑬

𝑫𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏

=
𝟏

𝜺
𝜵𝝆 

𝑺𝒐𝒖𝒓𝒄𝒆

ด∆𝑩
𝑺𝒑𝒂𝒕.𝒗𝒂𝒓.

− 𝝁𝜺
𝝏𝟐𝑩

𝝏𝒕𝟐

𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏

− 𝝁𝝈
𝝏𝑩

𝝏𝒕
𝑫𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏

= 0 

In the free space (𝝆 = 𝟎, 𝜺 = 𝜺𝟎, 𝝁 = 𝝁𝟎):

∆𝑬 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑬

𝝏𝒕𝟐
− 𝝁𝟎𝝈

𝝏𝑬

𝝏𝒕
= 𝟎 (𝑬𝒒. 𝟑. 𝟑)

∆𝑩 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑩

𝝏𝒕𝟐
− 𝝁𝟎𝝈

𝝏𝑩

𝝏𝒕
= 𝟎 (Eq.3.4)

Which shows that we get a 2nd degree

differential equations without constant terms

(homogeneous equations).

It should be noticed that 1st degree terms :

𝝁𝟎𝝈
𝝏𝑬

𝝏𝒕
and 𝝁𝟎𝝈

𝝏𝑩

𝝏𝒕
came from the presence of

non-null current.

III. Derivation of E.M wave’s equations



Indeed, considering free space as non

conducting medium (𝝈 = 𝟎), both equations

(3.3) and (3.4) will be reduced to:

∆𝑬 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑬

𝝏𝒕𝟐
= 𝟎 (𝑬𝒒. 𝟑. 𝟓)

∆𝑩 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑩

𝝏𝒕𝟐
= 𝟎 (Eq.3.6)

These equations are identical to general

wave’s equation (3D), and by identification we

can find that propagation velocity:

𝒗 =
𝟏

𝝁𝜺

Application (5min):
Calculate 𝒗𝟎 =

𝟏

𝝁𝟎𝜺𝟎
in the void (Air), and

comment your finding.

𝜺 = 𝜺𝟎 = 𝟖. 𝟖𝟓 × 𝟏𝟎−𝟏𝟐 𝑪𝟐. 𝑵−𝟏. 𝒎−𝟐

𝝁 = 𝝁𝟎 = 𝟒𝝅 × 𝟏𝟎−𝟕[𝑵. 𝑨−𝟐]

We find:

𝒗𝟎 =
𝟏

𝝁𝟎𝜺𝟎
= 𝟐. 𝟗𝟗 × 𝟏𝟎𝟖

𝒎

𝒔
The first measurements of light speed by

Bradley in 1729 ( 𝟑. 𝟎𝟏 × 𝟏𝟎𝟖 𝒎/𝒔 ), then

Fizeau in 1849 ( 𝟑. 𝟏𝟓 × 𝟏𝟎𝟖 𝒎/𝒔 ), and

Foucault in 1862 (𝟐. 𝟗𝟖 × 𝟏𝟎𝟖 𝒎/𝒔 ).

Maxwell’s treatise in Electricity and

Magnetism was published in 1873!!!

III. Derivation of E.M wave’s equations



The most important results of Maxwell’s work was the linking between light and

Electromagnetic fields:

“Light is electromagnetic wave propagating in the void with a speed:

𝒄 ≅ 𝟑 × 𝟏𝟎𝟖 𝒎/𝒔 ”

The differential equations (3.5) and (3.6) will support a periodic functions as solutions of the

following form:

𝑬 𝒓, 𝒕 = 𝑬𝟎. 𝒄𝒐𝒔 𝒓. 𝒌 − 𝝎𝒕

𝑩 𝒓, 𝒕 = 𝑩𝟎. 𝒄𝒐𝒔 𝒓. 𝒌 − 𝝎𝒕

With 𝒌 is the wave vector to be determined.

III. Derivation of E.M wave’s equations



Let’s go back to the first system of 2nd differential

equations including 1st order time term (𝝆 = 𝟎):

∆𝑬 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑬

𝝏𝒕𝟐 − 𝝁𝟎𝝈
𝝏𝑬

𝝏𝒕
= 𝟎 (𝑬𝒒. 𝟑. 𝟑)

∆𝑩 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑩

𝝏𝒕𝟐 − 𝝁𝟎𝝈
𝝏𝑩

𝝏𝒕
= 𝟎 (Eq.3.4)

We need just to replace both solutions in

equations (3.3) and (3.4):

∆ 𝒆 𝒓 . 𝒆𝒊𝝎𝒕 − 𝝁𝜺
𝝏𝟐 𝒆 𝒓 . 𝒆𝒊𝝎𝒕

𝝏𝒕𝟐
− 𝝁𝝈

𝝏

𝝏𝒕
𝒆 𝒓 . 𝒆𝒊𝝎𝒕 = 𝟎

∆ ෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕 − 𝝁𝜺
𝝏𝟐 ෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕

𝝏𝒕𝟐
− 𝝁𝝈

𝝏

𝝏𝒕
෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕 = 𝟎

This will give us the new space-differential

equations:

𝒆𝒊𝝎𝒕∆𝒆 𝒓 + 𝝁𝜺𝝎𝟐 𝒆 𝒓 𝒆𝒊𝝎𝒕 − 𝒊𝝎𝝁𝝈𝒆 𝒓 𝒆𝒊𝝎𝒕 = 𝟎

𝒆𝒊𝝎𝒕∆෩𝒃 𝒓 + 𝝁𝜺𝝎𝟐෩𝒃 𝒓 𝒆𝒊𝝎𝒕 − 𝒊𝝎𝝁𝝈෩𝒃 𝒓 𝒆𝒊𝝎𝒕 = 𝟎

To be reduced to (phasor’s equations):

∆𝒆 𝒓 + 𝝁𝜺𝝎𝟐 − 𝒊𝝎𝝁𝝈 𝒆 𝒓 = 𝟎

∆෩𝒃 𝒓 + 𝝁𝜺𝝎𝟐 − 𝒊𝝎𝝁𝝈 ෩𝒃 𝒓 = 𝟎

IV. The general solution of E.M equation wave 

10min Test: We propose the following form as general

solutions of (3.3) & (3.4). Replace them and deduce the

new differential equations of space phasors 𝒆 𝒓  & ෩𝒃 𝒓  :

෩𝑬 𝒓, 𝒕 = 𝒆 𝒓 . 𝒆𝒊𝝎𝒕 = 𝒆 𝒙, 𝒚, 𝒛 . 𝒆𝒊𝝎𝒕

෩𝑩 𝒓, 𝒕 = ෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕 = ෩𝒃 𝒙, 𝒚, 𝒛 . 𝒆𝒊𝝎𝒕

With: 𝒆𝒊𝝎𝒕 = 𝒄𝒐𝒔 𝝎𝒕 + 𝒊. 𝒔𝒊𝒏 𝝎𝒕, 𝒊𝟐 = −𝟏 



By introducing complex permittivity:

𝜺𝒄 = 𝜺 − 𝒊
𝝈

𝝎
= 𝜺′ − 𝒊𝜺′′, 𝜺′ = 𝜺, 𝜺′′ =

𝝈

𝝎

We got: 𝒌𝟐 = 𝝁𝜺𝒄𝝎𝟐 = 𝝁𝝎𝟐 𝜺 − 𝒊
𝝈

𝝎𝜺
= −𝜸𝟐 = 𝒊𝜸 𝟐

Finally, the 2nd order space differential

equations known as Helmholtz equation of

E.M wave could be written :

൝
∆𝒆 𝒓 + 𝒌𝟐 𝒆 𝒓 = 𝟎 (𝑬𝒒. 𝟑. 𝟕)

∆෩𝒃 𝒓 + 𝒌𝟐෩𝒃 𝒓 = 𝟎 (𝑬𝒒. 𝟑. 𝟖)

Consequently, solutions are of the form:

𝒆 𝒓 = 𝑬𝟎𝒆±𝒊𝒌 𝒓.𝒖 = 𝑬𝟎𝒆±𝒊 𝒓.𝒌

෩𝒃 𝒓 = 𝑩𝟎𝒆±𝒊𝒌 𝒓.𝒖 = 𝑩𝟎𝒆±𝒊 𝒓.𝒌

𝑬𝟎 and 𝑩𝟎: maximal amplitudes.

Where: 𝒌 = 𝝎 𝝁𝜺 𝟏 − 𝒊 Τ𝝈
𝝎𝜺 = 𝜶 + 𝒊𝜷

is known as “Wave number”.

And the parameter 𝜸 is called “propagation

constant”

In the specific case of lossless medium:

𝝈 = 𝟎 → 𝜺′′ = 𝟎

The wave number is purely real and the

propagation is done without loss of the

strength of E.M wave, and we have:

𝒌 = 𝝎 𝝁𝜺 =
𝝎

𝒗
=

𝟐𝝅

𝒗𝑻
=

𝟐𝝅

λ

𝒓𝒂𝒅

𝒎

IV. The general solution of E.M equation wave 



Replacing now 𝒆 𝒓 and 𝒃 𝒓  in the general

expression:

෩𝑬 𝒓, 𝒕 = 𝒆 𝒓 . 𝒆𝒊𝝎𝒕 = 𝑬𝟎𝒆𝒊 𝝎𝒕±𝒓.𝒌

෩𝑩 𝒓, 𝒕 = ෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕 = 𝑩𝟎𝒆𝒊 𝝎𝒕±𝒓.𝒌

Since 𝑬𝟎 and 𝑩𝟎 are amplitudes at initial

conditions they could be written:

𝑬𝟎 = 𝑬 𝟎, 𝟎 = 𝑬𝟎𝒖𝑬 = 𝑬𝟎 𝒆𝒊𝝋𝟎𝒖𝑬

𝑩𝟎 = 𝑩 𝟎, 𝟎 = 𝑩𝟎𝒖𝑩 = 𝑩𝟎 𝒆𝒊𝝋𝟎𝒖𝑩

𝝋𝟎: initial phase of the wave

For instance, if we consider two waves

represented by their electric fields, taken as

the real part of complex phasors:

𝑬𝟏 𝒓, 𝒕 = 𝑬𝟏𝟎 . ℜℯ 𝒆𝒊 𝝎𝒕±𝒓.𝒌 𝒖; 𝝋𝟏 = 𝟎

𝑬𝟐 𝒓, 𝒕 = 𝑬𝟐𝟎 ℜℯ 𝒆𝒊 𝝎𝒕±𝒓.𝒌+ ൗ𝝅
𝟐 𝒖; 𝝋𝟐 = ൗ𝝅

𝟐

IV. The general solution of E.M equation wave 



One of the important results of the previous

solutions given in complex notation, is the new

form of Maxwell equations. Indeed, let’s take the

following expressions of E.M fields:

෩𝑬 𝒓, 𝒕 = 𝒆 𝒓 . 𝒆𝒊𝝎𝒕

෩𝑯 𝒓, 𝒕 = ෩𝒉 𝒓 . 𝒆𝒊𝝎𝒕

When replaced in the Maxwell questions, taking in

consideration that (similarly for ෩𝑯 𝒓, 𝒕 ) :

𝝏෩𝑬 𝒓, 𝒕

𝝏𝒕
=

𝝏 𝒆 𝒓 . 𝒆𝒊𝝎𝒕

𝝏𝒕
= 𝒆 𝒓

𝝏𝒆𝒊𝝎𝒕

𝝏𝒕
= 𝒊𝝎𝒆 𝒓 . 𝒆𝒊𝝎𝒕

𝛁. 𝒆 =
𝝆

𝜺
 (𝑰)

𝛁 ∧ 𝒆 = −𝒊𝝎𝝁෩𝒉 (𝑰𝑰)

𝛁. ෩𝒉 = 𝟎 (𝑰𝑰𝑰)

𝛁 ∧ ෩𝒉 = ǁ𝒋 + 𝒊𝝎𝜺𝒆 (𝑰𝑽)

Which could be rewritten by taking ǁ𝒋 = 𝝈𝒆,

we get in free space (𝝆 = 𝟎 → 𝝆 = 𝟎):

𝛁. 𝒆 = 𝟎 (𝑰)

𝛁 ∧ 𝒆 = −𝒊𝝎𝝁෩𝒉 (𝑰𝑰)

𝛁. ෩𝒉 = 𝟎 (𝑰𝑰𝑰)

𝛁 ∧ ෩𝒉 = 𝒊𝝎𝜺𝒄 𝒆 (𝑰𝑽)

With: 𝜺𝒄 = 𝜺 − 𝒊
𝝈

𝝎
as introduced above.

V. Phasors Maxwell’s equations



According to previous results, both electric and

magnetic fields verifying differential equations are

of the form:

ቐ
෩𝑬 𝒓, 𝒕 = 𝑬𝟎𝒆±𝒊 𝒓.𝒌 𝒆𝒊𝝎𝒕 = 𝑬𝟎𝒆𝒊 𝝎𝒕±𝒓.𝒌 (𝑬𝒒. 𝟑. 𝟗)

෩𝑩 𝒓, 𝒕 = 𝑩𝟎𝒆±𝒊 𝒓.𝒌 𝒆𝒊𝝎𝒕 = 𝑩𝟎𝒆𝒊 𝝎𝒕±𝒓.𝒌 (𝑬𝒒. 𝟑. 𝟏𝟎)

Along positive direction, physical solutions are:

൞
𝑬 𝒓, 𝒕 = 𝑬𝟎. ℜℯ 𝒆𝒊 𝝎𝒕−𝒓.𝒌 (𝑬𝒒. 𝟑. 𝟏𝟏)

𝑩 𝒓, 𝒕 = 𝑩𝟎. ℜℯ 𝒆𝒊 𝝎𝒕−𝒓.𝒌 (𝑬𝒒. 𝟑. 𝟏𝟐)

Such wave is propagating in all directions with the

same intensities, therefore it constitutes a spherical

wave.

VI. Spherical and Planar waves 



To an observer very far away from the source, however,

the wavefront of the spherical wave appears

approximately planar, as if it were part of a uniform

plane wave with identical properties at all points in the

plane tangent to the wavefront. Plane waves are easily

described using a Cartesian coordinate system, which is

mathematically easier to work with than the spherical

coordinate system needed to describe spherical waves.

A wave produced by a localized source, such as an antenna, expands outwardly in the form of a

spherical wave. Even though an antenna may radiate more energy along some directions than

along others, the spherical wave travels at the same speed in all directions.

VI. Spherical and Planar waves 



It the case of plane waves, it is possible to

choose an arbitrary cartesian direction to

point the propagation direction along one of

the XYZ axes. For instance, if we take the +𝒛-

direction, so one can write the wave number

vector: 𝒌 = 𝒌𝒖𝒛

And the scalar product will reduce the spatial

term to: 𝒓. 𝒌 = 𝒙𝒖𝒙 + 𝒚𝒖𝒚 + 𝒛𝒖𝒛 . 𝒌𝒖𝒛 = 𝒌𝒛

Thus, the expression of electric field will be:

෩𝑬 𝒓, 𝒕 = 𝒆 𝒓 . 𝒆𝒊𝝎𝒕 = 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝑬

𝒖𝑬 = 𝒂𝒖𝒙 + 𝒃𝒖𝒚 + 𝒄𝒖𝒛; a, b, c are cosine directors

VII. Uniform plane waves 

When replaced in the first Maxwell equation a

free space as propagation medium 𝝆 = 𝟎 :

𝛁. 𝑬 = 𝛁. 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒓.𝒌+𝝋𝟎 𝒖𝑬 = 𝟎

𝝏𝒙𝒆−𝒊 𝒌𝒛

=𝟎

𝒖𝒙. 𝒖𝑬 + 𝝏𝒚𝒆−𝒊 𝒌𝒛

=𝟎

𝒖𝒚. 𝒖𝑬

+ 𝝏𝒛𝒆−𝒊 𝒌𝒛

=−𝒊𝒌𝒆−𝒊 𝒌𝒛 ≠𝟎

𝒖𝒛. 𝒖𝑬 = 𝟎 → 𝒖𝒛. 𝒖𝑬 = 𝟎

Which means that 𝒄 = 𝟎:

𝒖𝑬 = 𝒂𝒖𝒙 + 𝒃𝒖𝒚



The previous result, will allow us to write the electric field with its XY components:

෩𝑬 𝒓, 𝒕 = 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒂𝒖𝒙 + 𝒃𝒖𝒚

Now let’s use the second Maxwell equation: 𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕

𝛁 ∧ 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒂𝒖𝒙 + 𝒃𝒖𝒚 = −
𝝏 𝑩𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝑩

𝝏𝒕
= −𝒊𝝎 𝑩𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝑩

Performing the curl on the left hand and simplifying similar terms will produce:

−𝒊𝒌𝑬 −𝒃𝒖𝒙 + 𝒂𝒖𝒚 = −𝒊𝝎𝑩𝒖𝑩 → 𝒖𝑩 =
𝒌𝑬

𝑩
−𝒃𝒖𝒙 + 𝒂𝒖𝒚

Consequently, it will be easy to verify that 𝒖𝑩 ⟂ 𝒖𝑬, which implies that 𝑬 𝒓, 𝒕 and 𝑩 𝒓, 𝒕 are

orthogonal.

VII. Uniform plane waves 



Therefore, the plane electromagnetic wave

propagating in the +z-direction, could be

represented by both electric and magnetic

fields lying on XY plane, with a practical

choice (𝒂 = 𝟏, 𝒃 = 𝟎):

෩𝑬 𝒓, 𝒕 = 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝒙

෩𝑩 𝒓, 𝒕 = 𝑩𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝒚

Taking the real part of each phasor:

𝑬 𝒓, 𝒕 = 𝑬𝟎𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋𝟎 𝒖𝒙

𝑩 𝒓, 𝒕 = 𝑩𝟎𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋𝟎 𝒖𝒚 

Thus, the plane E.M wave propagating in a

given direction, is represented by two

orthogonal E.M fields lying on the

perpendicular plan of the propagation

direction given by the wave vector 𝒌.

The vectors 𝑬, 𝑩 and 𝒌 form a direct trihedral.

VII. Uniform plane waves 



By considering now that both E.M fields are lying on XY-plane and oriented along 𝒖𝒙 and 𝒖𝒚,

respectively, the use of the second Maxwell equation will provide the following relation between 𝑬

and 𝑯 (or between 𝑬 and 𝑩), called the “intrinsic impedance” of the given medium of propagation:

−𝒊𝒌𝑬 = −𝒊𝝎𝝁𝑯 →
𝑬 𝑽/𝒎

𝑯 𝑨/𝒎
=

𝝁𝝎

𝒌
= 𝜼 Ω =

𝝁𝝎

𝝎 𝝁 𝜺′ − 𝒊𝜺′′
= 𝜼 𝒆𝒊𝜽 𝑯 =

𝑬

𝜼
=

𝑬

𝜼
𝒆−𝒊𝜽

VIII. Relation between E and H: intrinsic impedance

10min Test: In the case of free space,

where: 𝝁 = 𝝁𝟎, 𝜺 = 𝜺𝟎, 𝜺′′ = 𝟎, Calculate 𝜼𝟎.

𝝁𝟎 = 𝟒𝝅 × 𝟏𝟎−𝟕𝑺. 𝑰 ; 𝜺𝟎 = 𝟖. 𝟖𝟓 × 𝟏𝟎−𝟏𝟐𝑺. 𝑰



By considering now that both E.M fields are lying on XY-plane and oriented along 𝒖𝒙 and 𝒖𝒚,

respectively, the use of the second Maxwell equation will provide the following relation between 𝑬

and 𝑯 (or between 𝑬 and 𝑩), called the “intrinsic impedance” of the given medium of propagation:

−𝒊𝒌𝑬 = −𝒊𝝎𝝁𝑯 →
𝑬 𝑽/𝒎

𝑯 𝑨/𝒎
=

𝝁𝝎

𝒌
= 𝜼 Ω =

𝝁𝝎

𝝎 𝝁 𝜺′ − 𝒊𝜺′′
= 𝜼 𝒆𝒊𝜽 𝑯 =

𝑬

𝜼
=

𝑬

𝜼
𝒆−𝒊𝜽

The intrinsic impedance of free space:

𝒌 = 𝝎 𝝁𝜺 → 𝜼𝟎 =
𝝁𝟎𝝎

𝝎 𝝁𝟎𝜺𝟎
=

𝝁𝟎

𝜺𝟎

=
𝟒𝝅 × 𝟏𝟎−𝟕

𝟖. 𝟖𝟓 × 𝟏𝟎−𝟏𝟐
≅ 𝟑𝟕𝟕 Ω ≡ 𝟏𝟐𝟎𝝅 Ω

10min Test: In the case of free space,

where: 𝝁 = 𝝁𝟎, 𝜺 = 𝜺𝟎, 𝜺′′ = 𝟎, Calculate 𝜼𝟎.

𝝁𝟎 = 𝟒𝝅 × 𝟏𝟎−𝟕𝑺. 𝑰 ; 𝜺𝟎 = 𝟖. 𝟖𝟓 × 𝟏𝟎−𝟏𝟐𝑺. 𝑰

VIII. Relation between E and H: intrinsic impedance



The Poynting’s equation:

− ර
𝑺

𝑬 ∧ 𝑯 . 𝒅𝑺

𝒕𝒐𝒕𝒂𝒍 𝑬.𝑴 𝒑𝒐𝒘𝒆𝒓 
𝒇𝒍𝒐𝒘𝒊𝒏𝒈 𝒐𝒖𝒕 𝑽 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝑺

= න
𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑩. 𝑯 . 𝒅𝒗

𝒕𝒐𝒕𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅
𝒊𝒏 𝒎𝒂𝒈𝒏𝒆𝒕𝒊𝒄 𝒇𝒊𝒆𝒍𝒅

+ න
𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑫. 𝑬

𝑻𝒐𝒕𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅
𝒊𝒏 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄 𝒇𝒊𝒆𝒍𝒅

+ න
𝑽

𝑬. Ԧ𝑱 𝒅𝒗

𝑶𝒉𝒎𝒊𝒄 𝒑𝒐𝒘𝒆𝒓 
𝒅𝒊𝒔𝒔𝒊𝒑𝒂𝒕𝒆𝒅 𝒐𝒗𝒆𝒓 𝑽

This theorem gives the time rates of increase of energy stored within the volume V, or the

instantaneous power going to increase the stored energy.

IX. Reminder: Poynting’s vector

The cross product of 𝑬 and 𝑯 define the Poynting’s

vector, indicating the power density flowing in the

direction of 𝓟 at a given point. (homonym “Poynting”

and “pointing” is accidentally “True”)

𝓟 𝑾. 𝒎−𝟐 = 𝑬 ∧ 𝑯

The measured value of Poynting value is an average

value over a specific time (period) and could be

obtained using general phasors:

𝓟 ≡ ഥ𝓟 =
𝟏

𝟐
ℜℯ ෩𝑬 ∧ ෩𝑯∗ ∝

𝟏

𝟐 𝜼
𝑬𝟎

𝟐𝒆−𝟐𝜷𝒛

With: ෩𝑯∗ is the conjugate of ෩𝑯



Let’s consider a non attenuated plane E.M

wave given by its electric and magnetic fields

lying on the plane corresponding to the wave

front, normal to the incidence direction

(using space phasors):

𝑬 𝐳, 𝒕 = ෩𝑬𝟎 . 𝒆𝝎𝒕; 𝑯 𝒛, 𝒕 = ෩𝑯𝟎 . 𝒆𝒊𝝎𝒕

X. Polarization of E.M wave 

In general, the electric field (and magnetic

field) did not keep the same orientation on

the wave plane, and it could vary with time

and traces a curve by the tip of the field vector

on the plane.

In such situation, the electric field (similarly

the magnetic field), could be divided into two

components on the wave front plane (x-y in

this case) propagating in +z-direction, :

෩𝑬 z = ෩𝑬𝒙 z 𝒖𝑥 + ෩𝑬𝒚 z 𝒖𝑦

And we can set:

෩𝑬𝒙 z = 𝐸𝑥0𝑒−𝑖𝑘𝑧; ෩𝑬𝒚 z = 𝐸𝑦0𝑒−𝑖𝑘𝑧



Both initial amplitudes 𝐸𝑥0 and 𝐸𝑦0 are in general complex numbers and could be written in

exponential form:

𝑬𝒙𝟎 = 𝒂𝒙𝒆𝒊𝝋𝒙; 𝑬𝒚𝟎 = 𝒂𝒚𝒆𝒊𝝋𝒚

With: 𝒂𝒙 = 𝑬𝒙𝟎 > 𝟎; 𝒂𝒚 = 𝑬𝒚𝟎 > 𝟎

Consequently, we can rewrite ෩𝑬 𝒛 :

෩𝑬 𝒛 = 𝒂𝒙𝒆−𝒊𝒌𝒛𝒆𝒊𝝋𝒙𝒖𝒙 + 𝒂𝒚𝒆−𝒊𝒌𝒛𝒆𝒊𝝋𝒚𝒖𝒚 → ෩𝑬 𝒛 = 𝒆−𝒊𝒌𝒛𝒆𝒊𝝋𝒙 𝒂𝒙𝒖𝒙 + 𝒂𝒚𝒆𝒊𝝋𝒖𝒚

With: 𝝋 = 𝝋𝒚 − 𝝋𝒙 called the phase difference between ෩𝑬𝒚 𝑧 and ෩𝑬𝒙 𝑧

For the sake of simplicity, we can choose to take 𝝋𝒙 = 𝟎 → 𝝋 = 𝝋𝒚: ෩𝑬 𝒛 = 𝒆−𝒊𝒌𝒛 𝒂𝒙𝒖𝒙 + 𝒂𝒚𝒆𝒊𝝋𝒖𝒚

Taking the real part of the phasor, we will get the instantaneous electric field:

𝑬 𝒛, 𝒕 = 𝒂𝒙. 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 𝒖𝒙 + 𝒂𝒚. 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋 𝒖𝒙

X. Polarization of E.M wave 



The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

a. Linear polarization 𝝋 = 𝟎 𝒐𝒓 𝝅:

For 𝝋 = 𝟎 (in-phase):

𝑬 𝒛, 𝒕 = 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋 𝒂𝒙. 𝒖𝒙 + 𝒂𝒚. 𝒖𝒙

𝑬(𝒛, 𝒕) = 𝒂𝒙
𝟐 + 𝒂𝒚

𝟐 𝟏/𝟐
𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝒂𝒚

𝒂𝒙

The amplitude is indeed function of z and t,
whereas the direction is not (fixed direction).

X. Polarization of E.M wave 



The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

a. Linear polarization 𝝋 = 𝟎 𝒐𝒓 𝝅:

For 𝝋 = 𝝅 (out-phase):

𝑬 𝒛, 𝒕 = 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋 𝒂𝒙. 𝒖𝒙 − 𝒂𝒚. 𝒖𝒙

𝑬(𝒛, 𝒕) = 𝒂𝒙
𝟐 + 𝒂𝒚

𝟐 𝟏/𝟐
𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
−𝒂𝒚

𝒂𝒙

The amplitude is indeed function of z and t,
whereas the direction is not (fixed direction).

X. Polarization of E.M wave 



The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

b. Circular polarization 𝝋 = ± Τ𝝅
𝟐 , 𝒂𝒙 = 𝒂𝒚 = 𝒂

For 𝝋 = Τ𝝅
𝟐 (Left Circular Polarization):

𝑬 𝒛, 𝒕 = 𝒂 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 𝒖𝒙 − 𝒔𝒊𝒏 𝝎𝒕 − 𝒌𝒛 𝒖𝒙

𝑬 𝒛, 𝒕 = 𝒂

𝝍 = 𝒕𝒂𝒏−𝟏
−𝒂. 𝒔𝒊𝒏 𝝎𝒕 − 𝒌𝒛

𝒂. 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛
= − 𝝎𝒕 − 𝒌𝒛

The direction is tracing a circular movement

in counter-clockwise direction.

X. Polarization of E.M wave 



The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

b. Circular polarization 𝝋 = ± Τ𝝅
𝟐 , 𝒂𝒙 = 𝒂𝒚 = 𝒂

For 𝝋 = − Τ𝝅
𝟐 (Right Circular Polarization):

𝑬 𝒛, 𝒕 = 𝒂 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 𝒖𝒙 + 𝒔𝒊𝒏 𝝎𝒕 − 𝒌𝒛 𝒖𝒙

𝑬 𝒛, 𝒕 = 𝒂

𝝍 = 𝒕𝒂𝒏−𝟏
𝒂. 𝒔𝒊𝒏 𝝎𝒕 − 𝒌𝒛

𝒂. 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛
= 𝝎𝒕 − 𝒌𝒛

The direction is tracing a circular movement

in counter-clockwise direction.

X. Polarization of E.M wave 



The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

b. Elliptical polarization

𝟎 < 𝝋 < ൗ𝝅
𝟐 , 𝒂𝒙 ≠ 𝒂𝒚

X. Polarization of E.M wave 



Planar E.M. wavesIII. Propagation of E.M Waves
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