

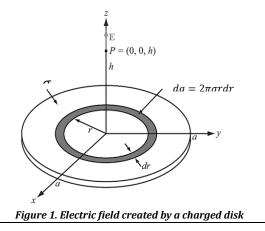
Serie of Exercises Chapter 01: Maxwell's equations

Exercise 01:

1. Demonstrate that for any vector: $\vec{A} = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}$ We always get the following result: $\vec{\nabla} . (\vec{\nabla} \land \vec{A}) = 0$ 2. Do the same for any scalar function f: $\vec{\nabla} \land (\vec{\nabla} f) = 0$

Exercise 02:

Find the electric field at point *P* with Cartesian coordinates (0, 0, h) due to a circular disk of radius a and uniform charge density σ residing in the x-y plane (Fig. 1). Also, evaluate *E* due to an infinite sheet of charge density σ by letting $a \rightarrow \infty$.



Exercise 03:

Two infinite lines, each carrying a uniform charge density λ , reside in free space parallel to the z-axis at x = 1 and x = -1. Determine \vec{E} at an arbitrary point along the y axis

Exercise 04:

A circular loop of radius *r* carries a steady current *I*. Determine the magnetic field \vec{B} at a point on the axis of the loop.

Exercise 05:

Two parallel wires of length $l_1 = l_2 = l$, separated by a distance $d \ll l$ carrying each one steady current I_1 and I_2 , respectively. Both currents are flowing in the same direction (Fig. 3).

- (a) By using Ampere law, determine the corresponding magnetic field induced by each wire at the location of the other wire.
- (b) What is the Laplace force applied on each wire by the other one.
- (c) Deduce the forces by unit length

(d) Suppose that the conductor carrying the current I_2 is rotated so that it is parallel to the x-axis. What would \vec{F}_2 be in this case?

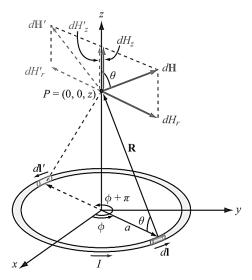


Figure 2. Circular loop carrying a current I

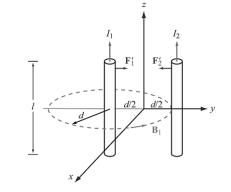


Figure 3. Parallel wires carrying steady currents

Exercise 06:

A long (practically infinite) straight wire of radius carries a steady current I that is uniformly distributed over its cross section (Fig. 4). Determine the magnetic field H a distance r from the wire axis for (a) $r \le a$ (inside the wire) and (b) $r \ge a$ (outside the wire).

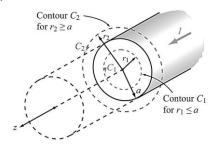


Figure 4. Infinitely long wire of radius a carrying a uniform current I along the +z direction

Khemis Miliana University Faculty of Material Science and Computer Science Department of Physics Master 1 Applied Physics (2024/2025)

Advanced Electromagnetism

Exercise 07:

An inductor is formed by winding *N* turns of a thin conducting wire into a circular loop of radius *a*. The inductor loop is in the x-y plane with its center at the origin and connected to a resistor *R*, as shown in Fig. 5. In the presence of a magnetic

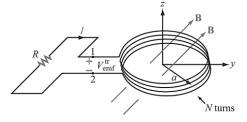
field $B = B_0(2\vec{j} + 3\vec{k}) \sin \omega t$, where ω is the angular frequency, find:

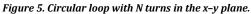
(a) the magnetic flux linking a single turn of the inductor, (b) the transformer V_{emf} given that N = 10,

 $B_0 = 0.2 T, a = 10 cm$, and $\omega = 103 rad/s$,

(c) the polarity of V_{emf}^{tr} at t = 0, and

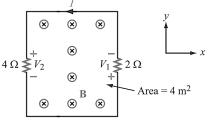
(d) the induced current in the circuit for $R = 1 k\Omega$ (assume the wire resistance to be much smaller than *R*).

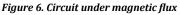




Exercise 08:

Determine voltages V_1 and V_2 across the 2Ω and 4Ω resistors shown in Fig. 6. The loop is located in the x-y plane, its area is $4m^2$, the magnetic flux density is $B = -0.3t\vec{k}[T]$, and the internal resistance of the wire may be ignored.





Exercise 09:

A rectangular conducting loop (with an area S = l.w) is rotated around its longest axis in the presence of a homogeneous magnetic field along +*z*-direction as shown in Fig. 7. The rotation is expressed by the angle α and ruled by the angular frequency ω :

 $\alpha = \omega t + \alpha_0,$

where α_0 is the initial angle corresponding to t = 0.

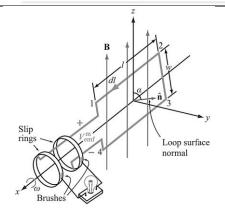


Figure 1. Electromagnetic generator principle

(a) express the magnetic flux for any instant t as a function of magnetic field amplitude B, the surface enclosed by the loop shape S, the angle α made between the \vec{B} and the surface vector \vec{n}

(b) deduce the emf produced at the ends of the rectangular loop in each instant *t*

Exercise 10:

The Ohm law in its point form, relates between the current density $\vec{j}[A.m^{-2}]$ and the applied electric field $\vec{E}[V.m^{-1}]$, through the conductivity $\sigma[S.m^{-1}]$ of the medium in which the charges flow: $\vec{j} = \sigma \vec{E}$.

(a) Use the charge continuity equation: $\vec{\nabla} \cdot \vec{j} + \frac{\partial \rho}{\partial t} = 0$ and 1st Maxwell's equation to establish the differential equation of charge density variation in such a medium, (b) Solve this time-equation by considering the boundary conditions: $\rho(t = 0) = \rho_0$, and define the characteristic time τ of ρ variation (Free-charge dissipation)

(c) Evaluate and comment τ for both cases:

(1) Copper: $\sigma = 5.8 \times 10^7 [S. m^{-1}]; \ \varepsilon \approx \varepsilon_0$

(2) Mica: $\sigma = 10^{-15} [S. m^{-1}]; \varepsilon = 6\varepsilon_0$

Exercise 11:

The conduction current flowing through a cross-section $S = 1mm^2$ of a wire with a conductivity $\sigma = 2 \times 10^7 [S.m^{-1}]$ and permittivity $\varepsilon = \varepsilon_0$, is given by: $I_c = 2 \sin \omega t \ [mA]$

If $\omega = 10^9 [rad. s^{-1}]$, find the displacement current $\vec{G} \equiv \vec{J}_d = \varepsilon \frac{\partial \vec{E}}{\partial t}$.

Exercise 12:

Considering equivalent situation like in Exercise 10, evaluate the displacement current for a poor conductor with $\sigma = 100 [S.m^{-1}]$ and permittivity $\varepsilon = 4\varepsilon_0$. What should be the angular frequency to get equivalent amplitudes $||J_c|| = ||J_d||$?