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Chapter 02

Electromagnetic potential and energy 



Reminder 1

Electrostatic and Magnetostatic equations:

This set of four equations could be expressed as a double set of decoupled

equations since no explicit relationships exist between electric and magnetic

fields:

ቐ
𝛁. 𝑬 =

𝝆

𝜺𝟎

𝛁 ∧ 𝑬 = 𝟎

; ൝
𝛁. 𝑩 = 𝟎 

𝛁 ∧ 𝑩 = 𝝁𝟎 Ԧ𝒋

This allows us to study electricity and magnetism as two distinct and separate

phenomena as long as the spatial distributions of charge and current flow

remain constant in time.



We should recall that for any scalar 𝐟 we have:

𝜵˄ 𝜵𝒇 = 𝟎

If we take the 2nd E.M equation:

𝛁˄𝑬 = 𝟎

It is easy to conclude that electric field should be

derived from a scalar function, which is the scalar

electric potential 𝒇 ≡ 𝑽

𝑬 = 𝛁𝒇 → 𝛁˄𝑬 = 𝜵˄ 𝜵𝒇 = 𝟎

By convention we consider that the variation of

electric field is the opposite direction of the gradient

of electrical potential 𝑽:

𝑬 = −𝛁𝑽

By definition, we can write the total differentiation

of electrical potential as:

𝒅𝑽 =
𝝏𝑽

𝝏𝒙
𝒅𝒙 +

𝝏𝑽

𝝏𝒚
𝒅𝒚 +

𝝏𝑽

𝝏𝒛
𝒅𝒛

With the definition:

𝑬 = −𝛁𝑽 
𝝏𝑽

𝝏𝒙
= −𝑬𝒙;

𝝏𝑽

𝝏𝒚
= −𝑬𝒚;

𝝏𝑽

𝝏𝒛
= −𝑬𝒛

This allows us to write the other relation between

electrical field and scalar potential:

𝒅𝑽 = −𝑬. 𝒅Ԧ𝒍 → 𝑽 = − න

𝑪

𝑬. 𝒅Ԧ𝒍

Which gives the potential as the circulation of the
electrical field.

I. Scalar electric potential (Electrostatic)



To be more accurate, the integral of the circulation

on a given path should start from a given point and

end at another one.

This leads us to define The potential difference

corresponding to moving a point charge from point

𝑷𝟏to point 𝑷𝟐, which is obtained by integrating the

last expression along any path between them:

∆𝑽 = 𝑽𝟐𝟏 = 𝑽𝟐 − 𝑽𝟏 = න
𝑷𝟏

𝑷𝟐

𝒅𝑽 = − න
𝑷𝟏

𝑷𝟐

𝑬. 𝒅Ԧ𝒍
Let’s recall here once again, that this integral did

not depend on the taken path, but only on the

starting and ending points. That what make the

electrostatic field conservative.

I. Scalar electric potential (Electrostatic)



II. Gauss’s law and Poisson’s equation

Now, using both equations:

𝑬 = −𝛁𝑽 … … … . 𝟏

𝜵. 𝑬 =
𝝆

𝜺𝟎
… … … . (𝟐)

And, by replacing (1) into (2), we obtain:

𝜵. 𝑬 = −𝜵. 𝜵𝑽 = −𝛁𝟐𝑽 = −∆𝑽 =
𝝆

𝜺𝟎

Which could be rewritten as:

∆𝑽 = −
𝝆

𝜺𝟎
∆𝑽 +

𝝆

𝜺𝟎
= 𝟎

This a second degree differential equation with

source term is known as “Poisson’s equation”.

The special case of absence of electric charges in the

free space, the Poisson’s equation will be reduced to

homogeneous differential equation:

∆𝑽 = 𝛁𝟐𝑽 = 𝟎

Known as “Laplace’s equation”.

In rectangular coordinates:

𝝏𝟐𝑽

𝝏𝒙𝟐
+

𝝏𝟐𝑽

𝝏𝒚𝟐
+

𝝏𝟐𝑽

𝝏𝒛𝟐
= 𝟎

In cylindrical coordinates:
𝟏

𝝆

𝝏

𝝏𝝆
𝝆

𝝏𝑽

𝝏𝝆
+

𝟏

𝝆𝟐

𝝏𝟐𝑽

𝝏𝝋𝟐
+

𝝏𝟐𝑽

𝝏𝒛𝟐
= 𝟎

In spherical coordinates:
𝟏

𝒓𝟐

𝝏

𝝏𝒓
𝒓𝟐

𝝏𝑽

𝝏𝒓
+

𝟏

𝒓𝟐. 𝒔𝒊𝒏𝜽

𝝏

𝝏𝜽
𝒔𝒊𝒏𝜽

𝝏𝑽

𝝏𝜽
+

𝟏

𝒓𝟐. 𝒔𝒊𝒏𝟐𝜽

𝝏𝟐𝑽

𝝏𝝋𝟐
= 𝟎



Again, let’s recall here that for any given vector 𝑨,

we always get:

𝜵. 𝜵 ∧ 𝑨 = 𝟎

By taking now the 3rd E.M equation:

𝛁. 𝑩 = 𝟎

It becomes easy to see that to verify this equation,

the magnetic field 𝑩 needs to be always a curl of

primary vector 𝑨 , known as vector magnetic

potential, in similar way to the electrostatic field

derived from scalar potential.

As a result the magnetic field could be written as:

𝑩 = 𝛁 ∧ 𝑨

In such way, we could always verify that:

𝛁. 𝑩 = 𝛁. 𝛁 ∧ 𝑨 = 𝟎; ∀𝑨

Since the magnetic field unit in S.I is Tesla :

𝟏 𝑻 = 𝟏 𝑾𝒆𝒃𝒆𝒓. 𝒎−𝟐 = 𝟏 𝑾𝒃. 𝒎−𝟐

Consequently the S.I unit for the vector magnetic

potential will be : 𝑾𝒃. 𝒎−𝟏 ≡
𝑾𝒃

𝒎

III. Magnetostatic vector potential



IV. Vector Poisson’s equation

In the same way as we achieve it for electric field,

let’s exploit both equations:

𝑩 = 𝛁 ∧ 𝑨 … … … (𝟑)

𝜵˄𝑩 = 𝝁𝟎 Ԧ𝒋 … … … (𝟒)

And replace (3) into (4):

𝜵˄𝑩 = 𝜵˄ 𝛁 ∧ 𝑨 = 𝝁𝟎 Ԧ𝒋

An appropriate and simplest choice about the term

𝜵. 𝑨 is to take (Coulomb gauge):

𝜵. 𝑨 = 𝟎

To avoid any conflicting with the requirement of

equation (3).

Using this choice leads to the “Vector Poisson’s

equation”:

∆𝑨 = −𝝁𝟎 Ԧ𝒋

Which is very similar to the Poisson’s equation for

the scalar electric potential:

∆𝑽 = −
𝝆

𝜺𝟎

We know already (from vector calculus) that for any

vector 𝑨, the Laplacian of 𝑨 obeys the vector identity

given by:

𝜵𝟐𝑨 = 𝜵 𝜵. 𝑨 − 𝜵 ⋏ 𝜵 ⋏ 𝑨

This implies:

𝜵 𝜵. 𝑨 − 𝜵𝟐𝑨 = 𝝁𝟎 Ԧ𝒋



Using the definition for 𝜵𝟐𝑨, the vector Poisson’s

equation can be decomposed into three scalar Pois

son’s equations

𝝏𝟐𝑨𝒙

𝝏𝒙𝟐
= −𝝁𝟎𝑱𝑺𝒙

𝝏𝟐𝑨𝒙

𝝏𝒚𝟐
= −𝝁𝟎𝑱𝑺𝒚

𝝏𝟐𝑨𝒙

𝝏𝒛𝟐 = −𝝁𝟎𝑱𝑺𝒛

As for Poisson’s equation for scalar potential, it is

possible to get back into vector potential

components:

𝑨𝒙 =
𝝁𝟎

𝟒𝝅
න

𝑺′

𝑱𝑺𝒙

𝒓
𝒅𝑺

Similar solutions could be found for the remain

components y and z:

Volume density:

𝑨 =
𝝁𝟎

𝟒𝝅
න

𝒗′

Ԧ𝑱𝑽

𝒓
𝒅𝒗

Surface density:

𝑨 =
𝝁𝟎

𝟒𝝅
න

𝑺′

Ԧ𝑱𝑺

𝒓
𝒅𝑺

Linear density:

𝑨 =
𝝁𝟎

𝟒𝝅
න

𝒍′

𝑰

𝒓
𝒅Ԧ𝒍

The vector magnetic potential provides a 3rd

approach for computing the magnetic field due to

current-carrying conductors in addition to the

methods suggested by Biot-Savart and Ampère law.

IV. Vector Poisson’s equation



Reminder 2

Maxwell’s equations:

The electromagnetism now are well described by the set of Maxwell’s equations:

𝛁. 𝑬 =
𝝆

𝜺𝟎
 𝑰 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐺𝑎𝑢𝑠𝑠 𝑙𝑎𝑤

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
 𝑰𝑰(𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝐿𝑎𝑤)

𝛁. 𝑩 = 𝟎 𝑰𝑰𝑰(𝐺𝑎𝑢𝑠𝑠 𝐿𝑎𝑤 𝑓𝑜𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑠𝑚)

𝛁 ∧ 𝑩 = 𝝁𝟎
Ԧ𝑱 + 𝝁𝟎𝜺𝟎

𝝏𝑬

𝝏𝒕
 𝑰𝑽(𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐴𝑚𝑝𝑒𝑟𝑒 𝐿𝑎𝑤)

These equations are also known as Maxwell equations for time-varying fields 𝑬(𝒕) and 𝑩(𝒕).



Both Faraday’s and Ampère’s laws revealed two

aspects of the link between time-varying electric and

magnetic fields. Let’s now examine the implications

of this interconnection on the electric scalar

potential V and the vector magnetic potential A.

Indeed, we have already saw that in electrostatic,

that the 2nd equation; 𝛁˄𝑬 = 𝟎; implies 𝑬 = −𝛁𝑽

If we define a new electrical field 𝑬′ such as:

𝑬′ = 𝑬 +
𝝏𝑨

𝝏𝒕
… … (𝟔)

Which is verifying the following equation:

𝛁˄𝑬′ = 𝟎

V. Electromagnetic potential

While in dynamic case, (considering that 𝑩 = 𝛁 ∧ 𝑨)

the 2nd equation (Maxwell’s equation) implies:

𝛁˄𝑬 = −
𝝏𝑩

𝝏𝒕
= −

𝝏 𝛁 ∧ 𝑨

𝝏𝒕
= −𝛁 ∧

𝝏𝑨

𝝏𝒕

𝛁˄ 𝑬 +
𝝏𝑨

𝝏𝒕
= 𝟎 … … . (𝟓)

Recalling the 2nd equation of Electrostatic. This

means that the new electric field is a conservative

field and could be derived from a scalar electric

field as follows:

𝑬′ = −𝛁𝑽 … . . (𝟕)

By substituting (6) in (7) we get:

𝑬 = −𝛁𝑽 −
𝝏𝑨

𝝏𝒕



Finally both electromagnetic fields 𝑬, 𝑩 in

dynamics case (time-dependent system), could be

obtained from scalar and vector potential, forming

an electromagnetic potential:

൞ 𝑬 = −𝛁𝑽 −
𝝏𝑨

𝝏𝒕

𝑩 = 𝛁 ∧ 𝑨 

Besides that, both potential verify Poisson’s

equations:

൞
∆𝑽 = −

𝝆

𝜺𝟎

∆𝑨 = −𝝁𝟎 Ԧ𝒋

Where, in general case of volume distribution

charge and density current, the calculation of both

potential is given through volume integrals:

𝑽 𝒓 =
𝟏

𝟒𝝅𝜺𝟎
න

𝝆 𝒓′

𝒓 − 𝒓′
𝒅𝑽′

𝑨 𝒓 =
𝝁𝟎

𝟒𝝅
න

Ԧ𝑱 𝒓′

𝒓 − 𝒓′
𝒅𝑽′

V. Electromagnetic potential

The physics will be unchanged under gauge

transformations of both scalar and vector potentials:

𝑽 → 𝑽 + 𝝓𝟎 and 𝑨 → 𝑨 + 𝛁𝝍𝟎

Where : 𝝓𝟎 is a constant, and 𝝍𝟎 is a scalar function,
since:

−𝛁 𝑽 + 𝝓𝟎 = −𝛁𝑽 = 𝑬; 𝛁𝝓𝟎 = 𝟎

𝛁 ∧ 𝑨 + 𝛁𝝍𝟎 = 𝛁 ∧ 𝑨 = 𝑩; 𝛁 ∧ 𝛁𝝍𝟎 = 𝟎



In order to find the power flow associated with

a time-dependent electromagnetic field, it was

necessary to develop a power theorem for the

electromagnetic field known as the Poynting

theorem. It was originally postulated in 1884

by an English physicist, John H. Poynting.

The development begins with the fourth

Maxwell’s equation, in which we assume that

the mediummay be conductive:

𝛁 ∧ 𝑯 = Ԧ𝑱 +
𝝏𝑫

𝝏𝒕

VI. Poynting’s theorem and E.M energy

Next, we take the scalar product of both sides

with 𝑬:

𝑬. 𝛁 ∧ 𝑯 = 𝑬. Ԧ𝑱 + 𝑬.
𝝏𝑫

𝝏𝒕

Using the following vectors identity:

𝛁. 𝑬 ⋏ 𝑯 = 𝑯. 𝛁 ⋏ 𝑬 − 𝑬. 𝛁 ⋏ 𝑯

Using the latter equation in the left side of IV

Maxwell’s equation:

𝑯. 𝛁 ∧ 𝑬  − 𝛁. 𝑬 ∧ 𝑯 = 𝑬. Ԧ𝑱 + 𝑬.
𝝏𝑫

𝝏𝒕

𝑯. −
𝝏𝑩

𝝏𝒕
 − 𝛁. 𝑬 ∧ 𝑯 = 𝑬. Ԧ𝑱 + 𝑬.

𝝏𝑫

𝝏𝒕



Make few adjustments about derivatives, since we know that: 𝑫 = 𝜺𝑬; 𝑩 = 𝝁𝑯,

we can write:

𝑬.
𝝏𝑫

𝝏𝒕
= 𝜺𝑬.

𝝏𝑬

𝝏𝒕
=

𝝏

𝝏𝒕

𝟏

𝟐
𝑫. 𝑬

𝑯.
𝝏𝑩

𝝏𝒕
= 𝝁𝑯.

𝝏𝑯

𝝏𝒕
=

𝝏

𝝏𝒕

𝟏

𝟐
𝑩. 𝑯

We get:

−𝛁. 𝑬 ∧ 𝑯 =
𝝏

𝝏𝒕

𝟏

𝟐
𝑩. 𝑯 +

𝝏

𝝏𝒕

𝟏

𝟐
𝑫. 𝑬 + 𝑬. Ԧ𝑱

Integrated over given volume 𝑽:

− න
𝑽

𝛁. 𝑬 ∧ 𝑯 . 𝒅𝒗 = න
𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑩. 𝑯 . 𝒅𝒗 + න

𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑫. 𝑬 + න

𝑽

𝑬. Ԧ𝑱 𝒅𝒗

VI. Poynting’s theorem and E.M energy



The new form of Poynting’s equation:

− ර
𝑺

𝑬 ∧ 𝑯 . 𝒅𝑺

𝒕𝒐𝒕𝒂𝒍 𝑬.𝑴 𝒑𝒐𝒘𝒆𝒓 
𝒇𝒍𝒐𝒘𝒊𝒏𝒈 𝒐𝒖𝒕 𝑽 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝑺

= න
𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑩. 𝑯 . 𝒅𝒗

𝒕𝒐𝒕𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅
𝒊𝒏 𝒎𝒂𝒈𝒏𝒆𝒕𝒊𝒄 𝒇𝒊𝒆𝒍𝒅

+ න
𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑫. 𝑬

𝑻𝒐𝒕𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅
𝒊𝒏 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄 𝒇𝒊𝒆𝒍𝒅

+ න
𝑽

𝑬. Ԧ𝑱 𝒅𝒗

𝑶𝒉𝒎𝒊𝒄 𝒑𝒐𝒘𝒆𝒓 
𝒅𝒊𝒔𝒔𝒊𝒑𝒂𝒕𝒆𝒅 𝒐𝒗𝒆𝒓 𝑽

This theorem gives the time rates of increase of energy stored within the volume V, or the

instantaneous power going to increase the stored energy.

The cross product of 𝑬 and 𝑯 define the Poynting’s vector, indicating the power density flowing in

the direction of𝓟 at a given point. (homonym “Poynting” and “pointing” is accidentally “True”)

𝓟 𝑾. 𝒎−𝟐 = 𝑬 𝑽. 𝒎−𝟏 ∧ 𝑯 𝑨. 𝒎−𝟏

VI. Poynting’s theorem and E.M energy
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