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Chapter 01

Maxwell’s Equations




I. Class Reminder Usefull maths

The cartesian frame system is defined with

the orthonormal basis: * X
.j=jk=ki=0
‘ .

) /
TAF T AT = BT & % /
y 4 N




I. Class Reminder Elementary measures

 Line element: (] Surface element:
* Cartesian coordinates: e Cartesian coordinates:

dl = dxi + dyj + dzk 0Z: dS = dx.dy
 Cylindrical coordinates: OY: dS = dx.dz

dl = dpi, + pdou, + dzk O0X. dS=dy.dz

. . * Cylindrical coordinates:
* Spherical coordinates:

R radial: dS = pdedz
dl = dru, + r.sinfdeu, + rdou,
axial: dS = pdedp

* Spherical coordinates:

radial: dS = r*sin6d¢do



I. ClaSS Reminder Operators

For a given variable x, we recall that partial Similarly, the curl of 4 (Vector) is given by:
derivation noted:

d Py d VAZ=rotA=
dx * dx

y=z=t=Cte

l

6
A,
When Nabla operator is applied on scalar function

We define the vector operator Nabla: f(x,y, 2) it gives the gradient of f:

i szgradf—lﬂ+]—f+7€g

ax ‘ady = oz dx “dy 0z

The Nabla operator could be applied twice on the

In such case, when applied on a given vector A4, we _
same operand (scalar or vector function):

obtain the divergent of A (Scalar):
e The scalar function

V.4 = divd = Px Oy O oy
A= d4dlV. A = d 0 d
ax | dy & oz (V) =V =af =55+ 55+ 55

This squared operator is called Laplacian.



I. ClaSS Reminder Operators

* The vector function: “* Useful integral rules:

VZA = V24,1 + V2A,] + V24,k .
For a given vector field 4, we have:
Also, given as follows:

V24 = V(ﬁ Z’) —VA (V A Z’) « Stokes ‘ theorem (1D - 2D)
f 4.di= U (V A 4).dS
Besides that, it is possible to demonstrate that C S
alternate application of Nabla with dot and cross .

Divergence  theorem/Ostrogradsky's

e 1 tor function will give
proauct on scalar or vecior iuncuaon wiil giv theorem (2D9 3D)

always null result:

o ~ # z.dfzjf (V.4) av
- V.(VA4)=0,v4 s v

+ VA(Vf) =0,vf




I- ClaSS Reminder Continuous distribution of electrical charge

dq=p.dV

= dg=0.dS
<
SF
BN

dq d

A=—]|C _4q
arl¢/m! o =—<[C/m?] pzﬂ[c/mg]

dv



I. ClaSS Reminder Electric Field of a charge distribution

5 d1

61 =K_2 ﬁl
&1

5 d2 _

82 =K_2 uZ
&)

S qd3 _

33 =K_2 u?)
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5 d12 _
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I. Class Reminder

E=61+62+ +
12
ﬁ 1
r;
" i=1
V

q; : infinitesimal 2 q; = dQ

N : large number

i

dQ

T

/2
i

l

Electric Field of a charge distribution

we need to know:

- The charge distribution: ), o or p;

- The geometry of the system;

- And exploit the symmetry if it exists

(rectangular, cylindrical, spherical)



I. Class Reminder Magnets and magnetism

Attraction

Magnetic dipole Magnetic dipole



Magnets and magnetism

I. Class Reminder

¢ field lines

Magneti
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I. Class Reminder ORSTED experiment (1819)

Expériences de Physique a main levée

Magnétisme
Hans Christian @rsted

r e \ (1777-1852), Danemark
Une expérience a la facon d'Orsted

uNni %3[ \\ Université
scle s Lille1




I. Class Reminder

ORSTED experiment (1819)

Hans Christian Orsted
(1777-1852), Danemark

—_— .,



I. Class Reminder @RSTED experiment (1819)

The Orsted’s law

@rsted found that, for a straight wire traversed by

a steady direct current (DC):

- The magnetic field lines encircle the current-
carrying wire and they lie in a plane perpendicular

to the wire;

- If the direction of the current is reversed, the

direction of the magnetic field reverses; Hans Christian @rsted

.\ (1777-1852), Danemark
- The strength of the field: B o< I A

- The strength of the field: B < 1/ ,

- the direction of the field lines: thumb rule
Phenomenology: Electricity < Magnetism



I. ClaSS Reminder Biot-Savart law

All the cited observations allowed Both two French scientists to deduce

the mathematical formulation of an elementary magnetic field induced

in a point P by an element dl (located at O) of the wire crossed by the

electrical current intensity I:

~ pmo. . PM  pg I . . / {
dB(M) = EMM ||PM||3 = 272 di/u S o

(1774-1862) (1791-1841)

The magnetic field, could be then obtained via the integral form:

Ho I. di/l ﬁ)PM

B(M) = f

Me(0)

dBp(M) = f

Me(0) 41 re

“which is not an easy calculation to do!!!”

Magnetic permeability: uy = 4m X 10‘7[H. m‘l]




I. Class Reminder

Biot-Savart law

If the current density is known, it will be more
convenient to calculate the magnetic field using

the density instead of the current intensity:
I1=].dS - I.dl=J(P).dS.dl = J(P).dV

Thus, the Biot-Savart law becomes in the case of

volume density:

dB (M) = M Z;.K—P))';lzf Upm
|74

B(M) = j

Pe(0)

jﬂ (P)/]uPM v

S - -

Besides that, the Biot-Savart law becomes in the

case of surface density:

P).dS  u
dB »(M) _ﬂ Ko ]S( )pMz Upy

B(M) = j

Pe(C)

ff Ko ]S(P)/]uPM ds



Example 01:

In this exercise, we will calculate the magnetic field B(M) induced by a straight wire with a length

[ = 2a, crossed by a steady direct current I. We will examine the case [ = o

A (—
P PM =R U, | 7
dli{ OM=r S
R Uy
-z % OP =z
R ﬁ cosa=r1/R
e S ST
T ol M dl = dz
1 ro .
- o I dintipy,
B




Solution:
Due to the cylindrical symmetry of the problem, the only non-zero component of §(M) is the

azimuthal one B,.(M) : 5 I
(P( ) I"’O I. dl/\upM _ [,l,o I. dl.uz/\upM

dBp(M) =
P(M) = P2 41 R?
f (—
| NP With: Upy = cos a. U, — sin a. U,
ai | |
. R r r
I cosa =—=
R 2 4 22
e e
A N z rda
it S TR —=tana - dl = dz = 5
; AN r cos’a
=
_ o I.u,nu, pol cos a.dz _,
dBp(M) = s—dz.cosa = s— Uy,
4m R 4m R
pol cos’a da _,
v = —cosa u
A1t r cos’a ?



Solution:

dB (M) Wo 1. u,nuU, pol cosa.r.dz _,  pgl cos’a da
= cosa = U, =——cosa u
d A4t RZ 4t R? ¢ 4an r costa ?
\ B0 (M) j dB (M) wol j cosa.da _,
i ~ = = u
p P d 41 r ¢
dl{ _ Bl e cosa.daiu, = Kol [25in Apgy] = Ho [Sin oty ]
: 411_1' . ()] 4‘1'[1' max an max

Z -, —Umax

) a
Sin A, g, =
va?z +r?
.
Ko — pol _,
- ~ lim sin « =1- lim —[sina - Bp(M) =——u
‘ Th =00 max a—oo 2TCT [ max] P( ) 21T (0]




I. ClaSS Remindel‘ Ampere theorem

The Ampere theorem states that the magnetic field circulation through a

closed path enclosing several currents I, is directly proportional to the

sum of these currents ),; I:

ﬁdi:”ﬂzlk
k

André-Marie Ampere
1775-1836 (France)

Contour (C) onenté



I. Class Reminder

Ampere theorem

In the case of colinear straight currents, we obtain a uniform magnetic

field parallel to the contour given by the Ampere law:

— 2 — = |
f B.dl=Bj§ dl=B.L=uOZIk—>B=”OZk k
k

L

Application: by using this law to calculate again the magnetic field

induced by the straight wire traversed by steady direct current I, in a given

point M located at the radial distance r from the wire.

André-Marie Ampere
1775-1836 (France)



|

Another way to solve example 01:

fﬁpdi}:ﬂozlk
k
2T

‘ — Bpj rd (pﬁ)(p'ﬁ)(p = BPZTl'r = ﬂol
. 0




Laplace force

I. Class Reminder

Pierre-Simon de Laplace

(1749-1827) France




Laplace force

I. Class Reminder

Pierre-Simon de Laplace

(1749-1827) France




I. ClaSS Reminder Laplace force

When a conductor carrying a direct current intensity I, is put near a
magnetic field, a mechanical force is applied on the wire and it tends to
displace him in a perpendicular direction on both magnetic field and

current flow. This force known as Laplace force is given by:

—

dF; = I.dInB > F, = fI.EiAB

In the case of uniform magnetic field, it is possible de perform the Pierre-Simon de Laplace

integration to obtain the force expression: (1749-1827) France

F,=LINB=I11B.sin01u

F,| =LIAB=ILB.sinZu=1I11Bu

NS



I. ClaSS Reminder Lorentz force

In the presence of electric field, any charged particle will feel an
applied electrical force given by: 76 = qf

Similarly, if the same charged particle is animated with a celerity v in
presence of a magnetic field, it will feel a magnetic force known as
Lorentz force: f,, = q.DAB

In the case, where both fields are present, we get the general

electromagnetic Lorentz force:

7[, — 76 + 7111 = 7EM = qE |- LIBU\E> = (. (E.’ + T}/\ﬁ) Hendrik LORENTZ
(1853-1928) Netherland



I. ClaSS Remindel‘ Ampere theorem

Deriving Laplace force from magnetic Lorentz force:

If we consider a density n of charged particles animated with an average

celerity vV crossing a wire section S in presence of a magnetic field B , where

each individual particle will feel the force: fm = q.‘l_}AE)

Over an elementary distance dl, an elementary volume dV = S. dl will represent P-S. Laplace

a number of charges: N = n. §.dl

This will constitute an element of macroscopic force:

dF,, =n.S.dl.q.9 B = (q.n.S.v)dIrB = IdIAB

By definition, we have: I = q.n.S.v

H. LORENTZ



I. ClaSS Reminder Magnetic induction and excitation

In physics the term magnetic field points Relative and absolute magnetic permeability

, . f di
usually to the physical value measured in orsome media

Tesla: B[T], While the physical value : Medium Ky p[H.m™']

— — —6

H[A/m] = uB[T] is defined as “magnetic Vaccum  1.00000000 1.25663062 X 10
Air 1.00000037 1.25663753 x 107°

itation’.

excrarion Water ~ 0.999992 1.256627 x 10~°

Where p = p,.u, points to the magnetic permeability Wood 1.00000043 1.25663760 X 10~6

of the given media where B is present. Concrete 1.00000000 1.25663062 x 107°
Iron 2 x10° 2.5x 1071

In engineering, B[T]| is called the magnetic

induction While : H{A/m] = ul_i’)[T] is defined

as “magnetic field”.



[1. Equations of Electrostatics Gauss’s law

The Gauss law states that for any enclosed charge inside a Total charge
no

surface S, one can find the electric field resulting from this

charge by calculating its flux:

#ﬁ.ﬁi@ B.dS =

€o

D-ds

S S/
Where: D = gy is electric flux density [C : m‘z] Gaussian surface S

enclosing volume v
A good choice of the Gaussian surface will conduct to a simple
R calculation of the electric field generated by the point charge q:

q JS - T 2w q
’\‘f # E.dS=—o { E,.r’sin0d0dg = Errzj sinfdl | de =—
o S Sy 0 0 €o

Gaussian surface

1
E, r*4m = i E, 12
o 41t£0 r



[1. Equations of Electrostatics

Gauss’s law

The Gauss law for a number of discrete charges
could also obtained as a generalization of the
previous law, when the surface S is enclosing N

charges Q;:

s
* Linear distribution: ¢, E.dS = si J,, Adl
0
- surface distribution: ¢f E.dS = si Jg, odS
0
NS = =1
* volume distribution: 6. E.dS = ” J,, pdv

It is interesting to see that for any vector field 4, the
divergence theorem allows us to convert a surface

integral into a volume integral:
# 4.ds = j (7. 7). dv
S 4
Thus, it is possible to rewrite the left-hand term of
the Gauss law with the volume distribution case:
— — — — 1

#E.ds =f (V.E).dv=—| pdv

3 v €0 Jyr
By identification, we get the differential form of

Gauss law (divergent of E):

FE=L
€o



[1. Equations of Electrostatics

Curl of electric field

Let’s take the law relating electric potential to the

electric field between two measurement points:

dVv = —j E.dl
Py Py

AV:V21:V2—V1:

We should note that:
 Wehave:V, - PyandV, - P,
* Kirchhofflaw: For P = P,

Pq
+ IfPi >0 oV, =0-V=—[ Edi
* The null potential is a referential value (not

absolute) , and it is called “ground”

If we use the Stokes’s theorem to convert a surface
integral into a closed line integral:
j (Vad). dS = 36 4. di
S C
Where C is a closed contour on which S is lying.

Thus, we can obtain the differential form from this

integral expression:
VAE =0

Any vector field verifying that its line integral along
any closed path is zero, is called conservative or

irrotational field.

Hence, the electrostatic field E is conservative.



[II. Equations of Magnetostatics Gauss law for magnetism

By considering the flux of magnetic field
lines through a given surface enclosing
totally or partially these lines, it comes
intuitively, due to the nature of the
magnetic dipole (permanent or induced)
that the same amount of field lines will
enter and then exit from that surface. This

will imply:

This is the equivalent Gauss law for

magnetic field in its integral form.

The differential form will be deduced in similar
way by using the conversion of surface integral to a

volume one:

f (V.B).dv=0-V.B=0
v/



[II. Equations of Magnetostatics

Curl of magnetic field

If now we rewrite the Ampere law of magnetic field

induced by a set of currents:

¢ K

Passing from summation to integral and using

surface density of current:
C RY;

If we use the Stokes’s theorem to convert a line

integral into a surface integral:
| @B).d5=¢ Bai
S C
We get by identification:
V/\E = Ilof

According to previous sections we could gather all
the differential and integral equations of both

electric and magnetic fields:

Where: D = ¢E; B = uﬁ

in the case of free space: € = €y, 4 = Uy

:
fD.dS:Q

(—)—) p

V.E =— (Vv D = N

£o iU S1 7§ D.di=0

IVAE=0 o{¥AD=0 _ )’

vE=o |TOC0. fﬁ.cﬁ:o
3@ H.di=1
\Y/C



IV. Equations of Electrodynamics

Faraday'’s law

This set of four equations could be expressed as a
double set of decoupled equations since no explicit
relationships exist between electric and magnetic

fields:

= == p — —>
V-E=£—O_ V.B=0

— — ’ VAE):
VAE=0 HoJ

This allows us to study electricity and magnetism as
two distinct and separate phenomena as long as the
spatial distributions of charge and current flow

remain constant in time.

H. C. @rsted
T 1819 experiment

Faraday hypothesized that if a

" current produces a magnetic field,

Michael Faraday
1791- 1867, UK

then the converse should also be true:
A magnetic field should produce a
current in a wire.

To test his hypothesis, he conducted
numerous experiments in his
laboratory in London over a period of
about 10 years (1821-1831)



IV. Equations of Electrodynamics Faraday’s law

= The principle of the experiments conducted by Faraday in his lab in London, consist to
place a conducting loop (sensor) connected to a galvanometer (predecessor
measurement device of voltmeter and amperemeter) next to a conducting coil

connected to a battery (electro-magnet). This latter will produce a magnetic field when

switch is on, with field lines going through the sensor loop.

= When the switch is turned on and the coil is crossed by a steady “:;Cghfeigzga%?'
current, a constant magnetic flux is passing through the Toon Coil
/
measurement loop: \§ 4
¢ _
D (Wh]| = f B.dS
S
I I
But no current was detected by the measurement loop. Even I\
repeated many times, but without a success to detect any current = 3
-+

produced by magnetic field as Faraday hypothesized. Galvanometer Battery



IV. Equations of Electrodynamics Faraday’s law

= After many attempts, Faraday noticed that the galvanometer needle showed a
momentary deflection, indicating the presence of a current for a very short period,

during the switching on or off of the coil circuit connected to the battery.

= (Consequently, Faraday deduced that the induced current in the loop appeared only when

the magnetic flux crossing the loop area changes

Michael Faraday
1791- 1867, UK

= He also remarked, that the direction of the current in the loop

Loop Coil
depends wether the flux is increasing (battery being connected) \\/ /
or decreasing (battery being disconnected). B ]
= Besides that, Faraday noticed that if the loop is turning or
A 1
moving either closer to or away from the inducing coil. Which is
an equivalent change of the magnetic flux against the loop i
-+

(relative movement). Galvanometer Battery



IV. Equations of Electrodynamics Faraday’s law

= As an important consequence, when the galvanometer detects the flow of current
through the loop, a voltage has been induced across the terminals of the galvanometer.
Faraday called this voltage “electromotive force” (emf), V o, s, and the whole phenomenon

is called “Electromagnetic induction’.

= This electromotive voltage is related to the magnetic flux

Michael Faraday
variation by the simple law (Faraday’s law): 1791- 1867, UK
Vv @ __d f B.dS :
= — = —— . B
emf T dt ~ dt)g B
= For a closed conducting loop of N turns, the law could

be generalized to : > =

dd d [ - - 4
Vems = —N-gy = ~Ng; ) B-dS ——



IV. Equations of Electrodynamics Faraday’s law

Accordingly, an EMF can be generated in a closed conducting loop under any of the |
following conditions:

= A time-varying magnetic field linking a stationary loop; the induced emf is then

called the “transformer emf” Vemf

= A moving loop with a time-varying area (relative to the normal component of B) Michael Faraday
1791- 1867, UK

in a static field B; the induced emf is then called “the motional emf”, V¢, ¢
= A moving loop in a time-varying field B

The total emf is given by:

Vemf Vtmf + Vemf

With Vg, = 0 if the loop is stationary, and Vi . = 0if B is static

emf —



IV. Equations of Electrodynamics Faraday’s law

Let’s examine the case of a conducting loop with unique turn (steady S) existing in

variable magnetic field ﬁ(t). In this situation, the former law of Faraday:
Vong =22 & Fas-—[ 23
emf = dt — dt)g g '

At the same time, according to integral law of electric field with electric potential:

Michael Faraday

Vems = — f E.dl 1791- 1867, UK
C
By comparison, and using the Stokes’s theorem, we can write:
— - —> —> — aE —
3@ E.dl=f (VAE).dS=-| —.dS
C S s Ot

To obtain the Faraday’s law in its differential form:
0B

VAE = ——
at




IV. Equations of Electrodynamics

Charge continuity

When we have a varying magnetic field, the four

equations of electrodynamics are given by:

f—> —
V.E = & (Gauss's law)
€0
_ . 0B
{VAE = — T (Faraday's Law)
V.B=0 (Gauss Law for magnetism)
ﬁ AB = o T (Ampere's Law)

This also assumes that the magnetic field is

induced by a time-varying current I(t).

Charge-Current continuity relation:

In time-varying case, it is possible to connect the
charge density p to the current j. This is done by

considering the definition of an electric current:

Q) d

The sign (-) is introduced here to relate the

I=-

conventional sense of the current with the
variation amount of elementary charged particles
(electrons).

Let’s now consider the current density:

I= j‘; j.ds (6)



IV. Equations of Electrodynamics

Charge continuity

Charge-Current continuity relation:

To compare both equations (5) and (6), we need
only to change the surface integral into volume

integral by using divergent theorem for eq. 6:
1:5L i.d§=j (V.j) av
S 4

Now when compared to eq. 5:

dQ(t) d ap
= — = —— . = — —.dV
dt ac), PV jl, at
It comes that:
. dp - Op

Known as “Charge continuity equation”

Charge density p,,

J

S encloses v

J

In the case of time-conservative charge density:
p#p(t)

We get : l_7)j =0

It means that the net current flowing out of the

volume is zero, or equivalently that, the incoming

flow into V is equal to the outcoming one.



IV. Equations of Electrodynamics Charge continuity

Charge-Current continuity relation:

From the previous result, of constant flow: /i
_V)i =0 /1 ' )I I
We can return to the integral form to find that: < _day
7
7j=0-[ jds=-o
S
Known as “Kirchhoff’s current law’. I3

The discrete form of this law is encountered in

] ] ] " ) It will be only sufficient to consider the junction of
circuits analysis as “nodes law":

connected conducting wires as a volume enclosed

zln =0 into a surface and different currents are flow
n

to/from it.



Let's consider again the electrodynamics set of

equations:
V.E = i I(Gauss's law)
€o
_ _, 0B
{VAE =— T II(Faraday's Law)
V.B=0 III(Gauss Law for magnetism)
ﬁ AB = poJ IV(Ampere's Law)

When applying the divergent of equations II and 1V,

we will find:

. — o ([ 0B . |
V.(V /\ﬁE) =V. <— E) =—o:(V.B)=0
=\l =0 (111 ‘

Maxwell correction

Now, when applying the same action on equation IV:

—

V. (V/\ﬁ) = V. (o)) = HoV.J = 1oV.J w
2

=0,vB
In fact, the quantity V.f does not vanish for all j,
only for special cases corresponding to 0p/at =0,
according to charge continuity equation.
To prevent this, Maxwell proposed
to add a term which could cancel
the divergent of the current density:
]_’> = 7 + G in such a way that:

V) =VJj+V.G6=0

This will give the following result:

. . James C. Maxwell
TLE = I = ot 1831- 1897, UK



V. Maxwell’s Equations

5. Maxwell correction of Ampere law:

This new term, will ingeniously ensure the complete
relationship (in both senses) between electric and

magnetic fields.
According to Gauss’s law: V.E = £ (Eq I), the Maxwell

condition could be rewritten as:

o . ap 0D _ 3(eV.E) ( aE)
V.G=-V.] = S S T = V. €057
This implies that:
.  OE
G = eoa
Finally, we get:
~ . - . OE
J=J+G=]+&o-

Maxwell correction

Consequently, the new version of eq. IV:

oE
VAB = pof —ﬂo]‘Hlofoa

And, when applying the divergent :

V.(VAB)=V. (ﬂo]) = 1oV.J' = poV.J + po&,V. FT)
=0,vB =0 (charge continuity)

The term G, known also as “Maxwell correction’, is

called the “displacement current”. The reduced

form of the equation IV, using both H and D fields :

oD
ot
The new set of electrodynamics equations could be

VAH=]+—

now completed and finalized, as Maxwell’s

Equations.



V. Maxwell’s Equations

Heaviside formulation

J.C. Maxwell
(1831-1879, UK)

 Maxwell’s equations (1865):

df dg dh
e+d_f+d_g+d_=0 (1) Gauss’ Law
x dy dz
= T dG
dy dz
_dfF di Equivalent to Gauss’ Law
= dz  dx ) for magnetism
28 ¥
dx dy
dy dz| df d¥
P= CANNY - Sl P
N dt p dr] dt dx
& i dG ¥ Faraday’s Law
Q=yla—y—|-——-— (3) (with the Lorentz Force
dt dt dt d
Y and Poisson’s Law)
dx dv) dd d¥
R = ——a— |- S
“ P er dr dz
dy _ap _ df
dy =z P’ = P E
da _ % =4 q=q ag (4) Ampere-Maxwell Law
z ax dt
dp da h
S Tk, 4 ¥ = rd—
dx dy t
P=-% Q=-& =-& Ohm’s Law
The electric elasticity
= — = kh
P=k Q=kg R equation (E = D/g)
de dp dq d
7f+d—p+d—q+ d—r =0 Continuity of charge
x dy dz

The present days vector
version of Maxwell’s
equations were elaborated
by his fellow citizen, the
physicist O. Heaviside in

1884.

Oliver HEAVISIDE
(1850-1925,UK)

(1) _|7> E = sﬂ Maxwell-Gauss

0
(2) VAE =— = Maxwell-Faraday
(3) V.B=0 Maxwell-Thomson

= . = 2 OE
(4 VAB = pugJ + Ho€o 5, Maxwell-Ampeére



V. Maxwell’s Equations

Maxwell’s equations:

The electromagnetism now are well described by the set of Maxwell’s equations:

I(Maxwell — Gauss law)

II(Maxwell — Faraday Law)

III(Gauss Law for magnetism)

IV (Maxwell — Ampere Law)

These equations are also known as Maxwell equations for time-varying fields f(t) and §(t)



V. Maxwell’s Equations

Maxwell’s equations:

The compact form without electromagnetic

constants, by introducing density current D and

magnetic field H:

(V.D = p I(Maxwell — Gauss law)
VAE =— T II(Maxwell — Faraday Law)

< — —
V.B=0 III(Gauss Law for magnetism)
. — ., aD

LV ANH =] + T IV (Maxwell — Ampere Law)

The integral forms of previous equations of

Maxwell are given in compact expressions:

in.cﬁ:Q (D
<jécfdi:_js D4 un
iﬁ.cﬁ:o an
§ A= (1+2).as av



V. Maxwell’s Equations

Maxwell’s equations: S T e L
The compact form without electromagnetic —

constants, by introducing density current D and

magnetic field H:

(V.D = p I(Maxwell — Gauss law)

VAE = —— II(Maxwell — Faraday Law)

V.B=0 III(Gauss Law for magnetism)

IV (Maxwell — Ampere Law)

" v e o e R L b Ry
s TN & G SR A PR Wy RN, R I

Maxwell’s equations on a plaque on his
statue in Edinburgh
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