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Chapter 01

Maxwell’s Equations 



The cartesian frame system is defined with

the orthonormal basis:

Ԧ𝒊. Ԧ𝒊 = Ԧ𝒋. Ԧ𝒋 = 𝒌. 𝒌 = 𝟏

Ԧ𝒊. Ԧ𝒋 = Ԧ𝒋. 𝒌 = 𝒌. Ԧ𝒊 = 𝟎

Ԧ𝒊 ⋏ Ԧ𝒊 = Ԧ𝒋 ⋏ Ԧ𝒋 = 𝒌 ⋏ 𝒌 = 𝟎

Ԧ𝒊 ⋏ Ԧ𝒋 = 𝒌; Ԧ𝒋 ⋏ 𝒌 = Ԧ𝒊; 𝒌 ⋏ Ԧ𝒊 = Ԧ𝒋

Usefull mathsI. Class Reminder



❑ Line element:

• Cartesian coordinates:

𝒅Ԧ𝒍 = 𝒅𝒙Ԧ𝒊 + 𝒅𝒚Ԧ𝒋 + 𝒅𝒛𝒌

• Cylindrical coordinates: 

𝒅Ԧ𝒍 = 𝒅𝝆𝒖𝝆 + 𝝆𝒅𝝋𝒖𝝋 + 𝒅𝒛𝒌

• Spherical coordinates: 

𝒅Ԧ𝒍 = 𝒅𝒓𝒖𝒓 + 𝒓. 𝒔𝒊𝒏𝜽𝒅𝝋𝒖𝝋 + 𝒓𝒅𝜽𝒖𝝋

Elementary measures

❑ Surface element:

• Cartesian coordinates:

𝑶𝒁: 𝒅𝑺 = 𝒅𝒙. 𝒅𝒚

𝑶𝒀: 𝒅𝑺 = 𝒅𝒙. 𝒅𝐳

𝑶𝑿: 𝒅𝑺 = 𝒅𝒚. 𝒅𝐳

• Cylindrical coordinates: 

𝒓𝒂𝒅𝒊𝒂𝒍: 𝒅𝑺 = 𝝆𝒅𝝋𝒅𝒛

𝒂𝒙𝒊𝒂𝒍: 𝒅𝑺 = 𝝆𝒅𝝋𝒅𝝆

• Spherical coordinates: 

𝒓𝒂𝒅𝒊𝒂𝒍: 𝒅𝑺 = 𝒓𝟐𝒔𝒊𝒏𝜽𝒅𝝋𝒅𝜽
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For a given variable 𝒙, we recall that partial

derivation noted:

𝝏

𝝏𝒙
= 𝝏𝒙 = ቤ

𝒅

𝒅𝒙
𝒚=𝒛=𝒕=𝑪𝒕𝒆

We define the vector operator Nabla:

𝛁 = Ԧ𝒊
𝝏

𝝏𝒙
+ Ԧ𝒋

𝝏

𝝏𝒚
+ 𝒌

𝝏

𝝏𝒛

In such case, when applied on a given vector 𝑨, we

obtain the divergent of 𝑨 (Scalar):

𝛁. 𝑨 = 𝒅𝒊𝒗. 𝑨 =
𝝏𝑨𝒙

𝝏𝒙
+

𝝏𝑨𝒚

𝝏𝒚
+

𝝏𝑨𝒛

𝝏𝒛

Similarly, the curl of 𝑨 (Vector) is given by:

𝛁 ⋏ 𝑨 = 𝒓𝒐𝒕𝑨 =
Ԧ𝒊

𝝏𝒙

𝑨𝒙

Ԧ𝒋
𝝏𝒚

𝑨𝒚

𝒌
𝝏𝒛

𝑨𝒛

When Nabla operator is applied on scalar function

𝒇(𝒙, 𝒚, 𝒛) it gives the gradient of 𝒇:

𝛁𝒇 = 𝒈𝒓𝒂𝒅𝒇 = Ԧ𝒊
𝝏𝒇

𝝏𝒙
+ Ԧ𝒋

𝝏𝒇

𝝏𝒚
+ 𝒌

𝝏𝒇

𝝏𝒛

Operators

The Nabla operator could be applied twice on the

same operand (scalar or vector function):

• The scalar function

𝛁. 𝛁 𝒇 = 𝛁𝟐𝒇 = ∆𝒇 =
𝝏𝟐𝒇

𝝏𝒙𝟐
+

𝝏𝟐𝒇

𝝏𝒚𝟐
+

𝝏𝟐𝒇

𝝏𝒛𝟐

This squared operator is called Laplacian.
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• The vector function:

𝛁𝟐𝑨 = 𝛁𝟐𝑨𝒙Ԧ𝒊 + 𝛁𝟐𝑨𝒚 Ԧ𝒋 + 𝛁𝟐𝑨𝒛𝒌

Also, given as follows:

𝛁𝟐𝑨 = 𝛁 𝛁. 𝑨 − 𝛁 ⋏ 𝛁 ⋏ 𝑨

❖ Useful integral rules:

For a given vector field 𝑨, we have:

• Stokes ‘ theorem (1D→ 2D)

ර
𝑪

𝑨. 𝒅Ԧ𝒍 = ඵ
𝑺

𝜵 ⋏ 𝑨 . 𝒅𝑺

• Divergence theorem/Ostrogradsky's

theorem (2D→ 3D)

඾
𝑺

𝑨. 𝒅𝑺 = ම
𝑽

𝛁. 𝑨 𝒅𝑽

Operators

Besides that, it is possible to demonstrate that

alternate application of Nabla with dot and cross

product on scalar or vector function will give

always null result:

• 𝛁. 𝛁 ⋏ 𝑨 = 𝟎, ∀𝑨

• 𝛁 ⋏ 𝛁𝒇 = 𝟎, ∀𝒇

I. Class Reminder



Continuous distribution of electrical charge

𝜌 =
𝑑𝑞

𝑑𝑉
[𝐶/𝑚3]

dq=.dV

𝜎 =
𝑑𝑞

𝑑𝑆
[𝐶/𝑚2]

dq=dS-
-
-
-
-

-
-
-
-

-
-
-
-
-

𝜆 =
𝑑𝑞

𝑑𝑙
[𝐶/𝑚]

d
q=


d
l
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Electric Field of a charge distribution

+

+

+

+

+

+

+

+

+

M 𝒖𝟏

𝒖𝟏𝟐
r1 → rn

Q

+

+

++
+
+
+
+
+
+
+
+
+
+
+
+
+
+

q1

q2

q3

.

.

qi

.

.

.

.

.

q12

qi=Q/12
Ԧ𝑒1 = 𝐾.

𝑞1

𝑟1
2

. 𝑢1

Ԧ𝑒2 = 𝐾.
𝑞2

𝑟2
2

. 𝑢2

Ԧ𝑒3 = 𝐾.
𝑞3

𝑟3
2

. 𝑢3

.

.

.

.

.

Ԧ𝑒12 = 𝐾.
𝑞12

𝑟12
2

. 𝑢12
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𝑬 = 𝒆𝟏 + 𝒆𝟐+. . . +𝒆𝟏𝟐 = ෍

𝒊=𝟏

𝟏𝟐

𝒆𝒊

𝑬 = 𝒌. 𝒒 ෍

𝒊=𝟏

𝟏𝟐
𝟏

𝒓𝒊
𝟐 . 𝒖𝒊

𝒆𝒊 = 𝒅𝑬 = 𝑲.
𝒅𝑸

𝒓𝒊
𝟐 . 𝒖𝒊

N : large number

𝒒𝒊 : infinitesimal → 𝒒𝒊 = 𝒅𝑸

𝑬 = න

𝑨

𝑩

𝒅𝑬 = 𝑲. න

𝑸

𝒅𝑸

𝒓𝟐
. 𝒖

we need to know:

- The charge distribution: , 𝝈 or 𝝆;

- The geometry of the system;

- And exploit the symmetry if it exists

(rectangular, cylindrical, spherical)

I. Class Reminder Electric Field of a charge distribution



Magnets and magnetism

Attraction

Repulsion

Magnetic dipole Magnetic dipole

I. Class Reminder



Magnetic field lines

I. Class Reminder Magnets and magnetism
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S

Magnetic field lines



ØRSTED experiment (1819)

Hans Christian Ørsted
(1777-1852), Danemark
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Hans Christian Ørsted
(1777-1852), Danemark

I. Class Reminder ØRSTED experiment (1819)



The Ørsted’s law

Hans Christian Ørsted
(1777-1852), Danemark

Ørsted found that, for a straight wire traversed by

a steady direct current (DC):

- The magnetic field lines encircle the current-

carrying wire and they lie in a plane perpendicular

to the wire;

- If the direction of the current is reversed, the

direction of the magnetic field reverses;

- The strength of the field: 𝑩 ∝ 𝑰

- The strength of the field : 𝑩 ∝ ൗ𝟏
𝒓𝟐

- the direction of the field lines: thumb rule
Phenomenology: Electricity Magnetism

I. Class Reminder ØRSTED experiment (1819)



Biot-Savart law

All the cited observations allowed Both two French scientists to deduce

the mathematical formulation of an elementary magnetic field induced

in a point 𝑷 by an element 𝒅Ԧ𝒍 (located at O) of the wire crossed by the

electrical current intensity 𝑰:

𝒅𝑩 𝑴 =
𝝁𝟎

𝟒𝝅
𝑰𝒅Ԧ𝒍 ⩘

𝑷𝑴

𝑷𝑴
𝟑 =

𝝁𝟎

𝟒𝝅

𝑰

𝒓𝟐 𝒅Ԧ𝒍 ⩘ 𝒖

The magnetic field, could be then obtained via the integral form:

𝑩 𝑴 = න
)𝐌∈(𝑪

𝒅𝑩𝑷 𝑴 = න
)𝐌∈(𝑪

𝝁𝟎

𝟒𝝅
.
𝑰. 𝒅Ԧ𝒍 ⩘ 𝒖𝑷𝑴

𝒓𝟐

“which is not an easy calculation to do!!!”

M

P

Magnetic permeability: 𝝁𝟎 = 𝟒𝛑 × 𝟏𝟎−𝟕 𝑯. 𝒎−𝟏

I. Class Reminder



If the current density is known, it will be more

convenient to calculate the magnetic field using

the density instead of the current intensity:

𝑰 = Ԧ𝑱. 𝒅𝑺 → 𝑰. 𝒅Ԧ𝒍 = 𝑱 𝑷 . 𝒅𝑺. 𝒅Ԧ𝒍 = )𝑱(𝑷 . 𝒅𝑽

Thus, the Biot-Savart law becomes in the case of

volume density:

𝑩 𝑴 = න
)𝑷∈(𝑪

𝒅𝑩𝑷 𝑴 = ම

𝑽

𝝁𝟎

𝟒𝝅
.

)𝑱(𝑷 . 𝒅𝑽 ⩘ 𝒖𝑷𝑴

𝑷𝑴𝟐

= ම

𝑽

𝝁𝟎

𝟒𝝅
.

)𝑱(𝑷 ⩘ 𝒖𝑷𝑴

𝑷𝑴𝟐 . 𝒅𝑽

Besides that, the Biot-Savart law becomes in the

case of surface density:

𝑩 𝑴 = න
)𝑷∈(𝑪

𝒅𝑩𝑷 𝑴 = ඵ

𝑺

𝝁𝟎

𝟒𝝅
.

)𝑱𝑺(𝑷 . 𝒅𝑺 ⩘ 𝒖𝑷𝑴

𝑷𝑴𝟐

= ඵ

𝑺

𝝁𝟎

𝟒𝝅
.

)𝑱𝑺(𝑷 ⩘ 𝒖𝑷𝑴

𝑷𝑴𝟐
. 𝒅𝑺

I. Class Reminder Biot-Savart law



Example 01:

In this exercise, we will calculate the magnetic field 𝑩 𝑴 induced by a straight wire with a length

𝑙 = 2𝑎, crossed by a steady direct current 𝐼. We will examine the case 𝑙 → ∞

𝑴

𝑷

𝒅𝒍

𝒛

𝒓

𝑹

𝟎

𝑷𝑴 ≡ 𝐑

𝑶𝑴 ≡ 𝒓

𝑶𝑷 ≡ 𝐳

𝒄𝒐𝒔 𝜶 = 𝒓/𝑹

𝒅𝑩𝑷 𝑴 =
𝝁𝟎

𝟒𝝅

𝑰. 𝒅Ԧ𝒍˄𝒖𝑷𝑴

𝑷𝑴𝟐

𝟐
𝒂 𝜶

𝑰

𝒖𝑷𝑴

𝑢𝑟

𝑢𝑧 𝑢𝜑

𝒅𝒍 ≡ 𝒅𝐳



Due to the cylindrical symmetry of the problem, the only non-zero component of 𝑩 𝑴 is the

azimuthal one𝑩𝝋 𝑴 ∶

𝑴

𝑷

𝒅𝒍

𝒛

𝒓

𝑹

𝟎

𝟐
𝒂 𝜶

𝑰

𝒖𝑷𝑴

𝑢𝑟

𝑢𝑧 𝑢𝜑

𝒅𝑩𝑷 𝑴 =
𝝁𝟎

𝟒𝝅

𝑰. 𝒅Ԧ𝒍˄𝒖𝑷𝑴

𝑷𝑴𝟐 =
𝝁𝟎

𝟒𝝅

𝑰. 𝒅𝒍. 𝒖𝒛˄𝒖𝑷𝑴

𝑹𝟐

With: 𝒖𝑷𝑴 = 𝒄𝒐𝒔 𝜶. 𝒖𝒓 − 𝒔𝒊𝒏 𝜶. 𝒖𝒛

𝒄𝒐𝒔 𝜶 =
𝒓

𝑹
=

𝒓

𝒓𝟐 + 𝒛𝟐

𝒅𝑩𝑷 𝑴 =
𝝁𝟎

𝟒𝝅

𝑰. 𝒖𝒛˄𝒖𝒓

𝑹𝟐
𝒅𝒛. 𝒄𝒐𝒔𝜶 =

𝝁𝟎𝑰

𝟒𝝅

𝒄𝒐𝒔 𝜶. 𝒅𝒛

𝑹𝟐
𝒖𝝋

=
𝝁𝟎𝑰

𝟒𝝅
𝒄𝒐𝒔𝜶

𝒄𝒐𝒔𝟐𝜶

𝒓

𝒅𝜶

𝒄𝒐𝒔𝟐𝜶
𝒖𝝋

𝒛

𝒓
= 𝒕𝒂𝒏𝜶 → 𝒅𝒍 ≡ 𝒅𝐳 =

𝒓𝒅𝜶

𝒄𝒐𝒔𝟐𝜶

Solution:



Solution:

𝑴

𝑷

𝒅𝒍

𝒛

𝒓

𝑹

𝟎

𝟐
𝒂 𝜶

𝑰

𝒖𝒓

𝑢𝑟

𝑢𝑧 𝑢𝜑

𝒅𝑩𝑷 𝑴 =
𝝁𝟎

𝟒𝝅

𝑰. 𝒖𝒛˄𝒖𝒓

𝑹𝟐
𝒄𝒐𝒔𝜶 =

𝝁𝟎𝑰

𝟒𝝅

𝒄𝒐𝒔𝜶. 𝒓. 𝒅𝒛

𝑹𝟐
𝒖𝝋 =

𝝁𝟎𝑰

𝟒𝝅
𝒄𝒐𝒔𝜶

𝒄𝒐𝒔𝟐𝜶

𝒓

𝒅𝜶

𝒄𝒐𝒔𝟐𝜶
𝒖𝝋

𝑩𝑷 𝑴 = න 𝒅𝑩𝑷 𝑴 =
𝝁𝟎𝑰

𝟒𝝅
න

𝒄𝒐𝒔𝜶. 𝒅𝜶

𝒓
𝒖𝝋

=
𝝁𝟎𝑰

𝟒𝝅𝒓
න

−𝜶𝒎𝒂𝒙

𝜶𝒎𝒂𝒙

𝒄𝒐𝒔𝜶. 𝒅𝜶 𝒖𝝋 =
𝝁𝟎𝑰

𝟒𝝅𝒓
𝟐𝒔𝒊𝒏 𝜶𝒎𝒂𝒙 =

𝝁𝟎𝑰

𝟐𝝅𝒓
𝒔𝒊𝒏 𝜶𝒎𝒂𝒙

𝒔𝒊𝒏 𝜶𝒎𝒂𝒙 =
𝒂

𝒂𝟐 + 𝒓𝟐

lim
𝑎→∞

𝒔𝒊𝒏 𝜶𝒎𝒂𝒙 = 𝟏 → lim
𝑎→∞

𝝁𝟎𝑰

𝟐𝝅𝒓
𝒔𝒊𝒏 𝜶𝒎𝒂𝒙 → 𝑩𝑷 𝑴 =

𝝁𝟎𝑰

𝟐𝝅𝒓
𝒖𝝋



The Ampere theorem states that the magnetic field circulation through a

closed path enclosing several currents 𝑰𝒌 is directly proportional to the

sum of these currents σ𝒌 𝑰𝒌:

ර 𝑩. 𝒅Ԧ𝒍 = 𝝁𝟎 ෍

𝒌

𝑰𝒌

André-Marie Ampère
1775-1836 (France)

I. Class Reminder Ampere theorem



In the case of colinear straight currents, we obtain a uniform magnetic

field parallel to the contour given by the Ampere law:

ර 𝑩. 𝒅Ԧ𝒍 = 𝑩 ර 𝒅Ԧ𝒍 = 𝑩. 𝑳 = 𝝁𝟎 ෍

𝒌

𝑰𝒌 → 𝑩 =
𝝁𝟎 σ𝒌 𝑰𝒌

𝑳

André-Marie Ampère
1775-1836 (France)

Application: by using this law to calculate again the magnetic field

induced by the straight wire traversed by steady direct current 𝑰, in a given

point 𝑴 located at the radial distance 𝒓 from the wire.

I. Class Reminder Ampere theorem



Another way to solve example 01:

𝑴

𝑷

𝒅𝒍

𝒛

𝒓

𝑹

𝟎

𝟐
𝒂 𝜶

𝑰

𝒖𝒓

𝑢𝑟

𝑢𝑧 𝑢𝜑

න 𝑩𝑷 . 𝒅Ԧ𝒍 = 𝝁𝟎 ෍

𝒌

𝑰𝒌

→ 𝑩𝑷 න
𝟎

𝟐𝝅

𝒓𝒅 𝝋𝒖𝝋. 𝒖𝝋 = 𝑩𝑷𝟐𝝅𝒓 = 𝝁𝟎𝑰

→ 𝑩𝑷 =
𝝁𝟎𝑰

𝟐𝝅𝒓



𝐼

𝑑𝑙

𝑑 Ԧ𝐹𝐿

𝐵

-+

𝑭𝑳

𝐼𝑑Ԧ𝑙

𝐵

𝑑 Ԧ𝐹𝐿

Pierre-Simon de Laplace

(1749-1827) France
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𝐵

𝐼

-+

𝐼Ԧ𝑙

𝐵

𝑭𝑳

Pierre-Simon de Laplace

(1749-1827) France
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When a conductor carrying a direct current intensity 𝑰, is put near a

magnetic field, a mechanical force is applied on the wire and it tends to

displace him in a perpendicular direction on both magnetic field and

current flow. This force known as Laplace force is given by:

𝒅𝑭𝑳 = 𝑰. 𝒅𝒍˄𝑩 → 𝑭𝑳 = න 𝑰. 𝒅𝒍˄𝑩

In the case of uniform magnetic field, it is possible de perform the

integration to obtain the force expression:

𝑭𝑳 = 𝑰. Ԧ𝒍˄𝑩 = 𝑰. 𝒍. 𝑩. 𝒔𝒊𝒏 𝜽 𝒖

ห𝑭𝑳 𝒎𝒂𝒙
= 𝑰. Ԧ𝒍˄𝑩 = 𝑰. 𝒍. 𝑩. 𝒔𝒊𝒏

𝝅

𝟐
𝒖 = 𝑰. 𝒍. 𝑩𝒖

Pierre-Simon de Laplace

(1749-1827) France

I. Class Reminder Laplace force



In the presence of electric field, any charged particle will feel an

applied electrical force given by: 𝒇𝒆 = 𝒒𝑬

Similarly, if the same charged particle is animated with a celerity 𝒗 in

presence of a magnetic field, it will feel a magnetic force known as

Lorentz force: 𝒇𝒎 = 𝒒. 𝒗˄𝑩

In the case, where both fields are present, we get the general

electromagnetic Lorentz force:

𝒇𝑳 = 𝒇𝒆 + 𝒇𝒎 = 𝒇𝑬.𝑴 = 𝒒. 𝑬 + 𝒒. 𝒗˄𝑩 = 𝒒. 𝑬 + 𝒗˄𝑩 Hendrik LORENTZ

(1853-1928) Netherland

I. Class Reminder Lorentz force



Deriving Laplace force from magnetic Lorentz force:

If we consider a density 𝒏 of charged particles animated with an average

celerity 𝒗 crossing a wire section 𝑺 in presence of a magnetic field 𝑩 , where

each individual particle will feel the force: 𝒇𝒎 = 𝒒. 𝒗˄𝑩

Over an elementary distance 𝒅𝒍, an elementary volume 𝒅𝑽 = 𝑺. 𝒅𝒍 will represent

a number of charges: 𝑵 = 𝒏. 𝑺. 𝒅𝒍

This will constitute an element of macroscopic force:

𝒅𝑭𝒎 = 𝒏. 𝑺. 𝒅𝒍. 𝒒. 𝒗˄𝑩 = 𝒒. 𝒏. 𝑺. 𝒗 𝒅Ԧ𝒍˄𝑩 = 𝑰𝒅Ԧ𝒍˄𝑩

By definition, we have: 𝑰 = 𝒒. 𝒏. 𝑺. 𝒗

H. LORENTZ

P-S. Laplace

I. Class Reminder Ampere theorem



In physics the term magnetic field points

usually to the physical value measured in

Tesla: 𝑩 𝑻 , While the physical value :

𝑯 𝑨/𝒎 = 𝝁𝑩 𝑻 is defined as “magnetic

excitation”.

Where 𝝁 = 𝝁𝒓𝝁𝟎 points to the magnetic permeability

of the given media where 𝑩 is present.

In engineering, 𝑩 𝑻  is called the magnetic

induction While : 𝑯 𝑨/𝒎 = 𝝁𝑩 𝑻 is defined

as “magnetic field”.

Medium 𝝁𝒓 𝝁[𝑯. 𝒎−𝟏]

Vaccum 1.00000000 1.25663062 × 10−6

Air 1.00000037 1.25663753 × 10−6

Water 0.999992 1.256627 × 10−6

Wood 1.00000043 1.25663760 × 10−6

Concrete 1.00000000 1.25663062 × 10−6

Iron 2 × 105 2.5 × 10−1

Relative and absolute magnetic permeability
for some media

I. Class Reminder Magnetic induction and excitation



The Gauss law states that for any enclosed charge inside a

surface 𝑺′, one can find the electric field resulting from this

charge by calculating its flux:

඾

𝑺

𝑬 . 𝒅𝑺 =
𝑸

𝜺𝟎
඾

𝑺′

𝑫 . 𝒅𝑺 = 𝑸

Where: 𝑫 = 𝜺𝟎𝑬 is electric flux density 𝑪. 𝒎−𝟐

A good choice of the Gaussian surface will conduct to a simple

calculation of the electric field generated by the point charge 𝒒:

඾

𝑺

𝑬 . 𝒅𝑺 =
𝒒

𝜺𝟎
඾

𝑺′

𝑬𝒓 𝒓𝟐𝒔𝒊𝒏𝜽𝒅𝜽𝒅𝝋 = 𝑬𝒓𝒓𝟐 න
𝟎

𝝅

𝒔𝒊𝒏𝜽𝒅𝜽 න
𝟎

𝟐𝝅

𝒅𝝋 =
𝒒

𝜺𝟎

𝑬𝒓𝒓𝟐𝟒𝝅 =
𝒒

𝜺𝟎
→ 𝑬𝒓 =

𝟏

𝟒𝝅𝜺𝟎

𝒒

𝒓𝟐

Gauss’s lawII. Equations of Electrostatics



The Gauss law for a number of discrete charges

could also obtained as a generalization of the

previous law, when the surface 𝑺 is enclosing 𝑵

charges 𝑸𝒊:

඾

𝑺

𝑬 . 𝒅𝑺 =
𝟏

𝜺𝟎
෍

𝒊=𝟏

𝑵

𝑸𝒊

And, for a continuous distributions of charge, we get:

඾

𝑺

𝑬 . 𝒅𝑺 =
𝟏

𝜺𝟎
න 𝒅𝒒

• Linear distribution: 𝑺װ
𝑬 . 𝒅𝑺 =

𝟏

𝜺𝟎
′𝒍׬

λ𝒅𝒍

• surface distribution: 𝑺װ
𝑬 . 𝒅𝑺 =

𝟏

𝜺𝟎
′𝑺׬

𝝈𝒅𝑺

• volume distribution: 𝑺װ
𝑬 . 𝒅𝑺 =

𝟏

𝜺𝟎
′𝒗׬

𝝆𝒅𝒗

It is interesting to see that for any vector field 𝑨, the

divergence theorem allows us to convert a surface

integral into a volume integral:

඾
𝑺

𝑨. 𝒅𝑺 = න
𝑽

𝜵. 𝑨 . 𝒅𝒗

Thus, it is possible to rewrite the left-hand term of

the Gauss law with the volume distribution case:

඾

𝑺

𝑬 . 𝒅𝑺 = න
𝒗′

𝜵. 𝑬 . 𝒅𝒗 =
𝟏

𝜺𝟎
න

𝒗′

𝝆𝒅𝒗

By identification, we get the differential form of

Gauss law (divergent of 𝑬):

𝜵. 𝑬 =
𝝆

𝜺𝟎

Gauss’s lawII. Equations of Electrostatics



Let’s take the law relating electric potential to the

electric field between two measurement points:

∆𝑽 = 𝑽𝟐𝟏 = 𝑽𝟐 − 𝑽𝟏 = න
𝑷𝟏

𝑷𝟐

𝒅𝑽 = − න
𝑷𝟏

𝑷𝟐

𝑬. 𝒅Ԧ𝒍

We should note that:

• We have : 𝑽𝟏 → 𝑷𝟏 and 𝑽𝟐 → 𝑷𝟐

• Kirchhoff law: For 𝑷𝟏 ≡ 𝑷𝟐

∆𝑽 = 𝟎 න
𝑷𝟏

𝑷𝟏

𝑬. 𝒅Ԧ𝒍 = ර
𝑪

𝑬. 𝒅Ԧ𝒍 = 𝟎

• If 𝑷𝟏 → ∞ 𝑽𝟏 = 𝟎 → 𝑽 = − ∞׬

𝑷
𝑬. 𝒅Ԧ𝒍

• The null potential is a referential value (not

absolute) , and it is called “ground”

If we use the Stokes’s theorem to convert a surface

integral into a closed line integral:

න
𝑺

𝛁˄𝑨 . 𝒅𝑺 = ර
𝑪

𝑨. 𝒅Ԧ𝒍

Where C is a closed contour on which S is lying.

Thus, we can obtain the differential form from this

integral expression:

𝛁˄𝑬 = 𝟎

Any vector field verifying that its line integral along

any closed path is zero, is called conservative or

irrotational field.

Hence, the electrostatic field 𝑬 is conservative.

Curl of electric field II. Equations of Electrostatics



By considering the flux of magnetic field

lines through a given surface enclosing

totally or partially these lines, it comes

intuitively, due to the nature of the

magnetic dipole (permanent or induced)

that the same amount of field lines will

enter and then exit from that surface. This

will imply:

඾

𝑺

𝑩 . 𝒅𝑺 = 𝟎

This is the equivalent Gauss law for

magnetic field in its integral form.

The differential form will be deduced in similar

way by using the conversion of surface integral to a

volume one:

න
𝒗′

𝛁. 𝑩 . 𝒅𝒗 = 𝟎 → 𝛁. 𝑩 = 𝟎

Gauss law for magnetismIII. Equations of Magnetostatics



If now we rewrite the Ampere law of magnetic field

induced by a set of currents:

ර
𝑪

𝑩. 𝒅Ԧ𝒍 = 𝝁𝟎 ෍

𝒌

𝑰𝒌

Passing from summation to integral and using

surface density of current:

ර
𝑪

𝑩. 𝒅Ԧ𝒍 = 𝝁𝟎 ඵ
𝑺′

Ԧ𝒋. 𝒅𝑺

If we use the Stokes’s theorem to convert a line

integral into a surface integral:

න
𝑺

𝜵˄𝑩 . 𝒅𝑺 = ර
𝑪

𝑩. 𝒅Ԧ𝒍

We get by identification:

𝜵˄𝑩 = 𝝁𝟎 Ԧ𝒋

Curl of magnetic fieldIII. Equations of Magnetostatics

According to previous sections we could gather all

the differential and integral equations of both

electric and magnetic fields:

𝛁. 𝑬 =
𝝆

𝜺𝟎
 

𝛁 ∧ 𝑬 = 𝟎 

𝛁. 𝑩 = 𝟎 

𝛁 ∧ 𝑩 = 𝝁𝟎
Ԧ𝑱

𝛁. 𝑫 = 𝝆 

𝛁 ∧ 𝑫 = 𝟎 

𝛁. 𝑯 = 𝟎 

𝛁 ∧ 𝑯 = Ԧ𝑱 

ර 𝑫 . 𝒅𝑺 = 𝑸 

ර
𝐶

𝑫 . 𝒅Ԧ𝒍 = 𝟎 

ර 𝑯 . 𝒅𝑺 = 𝟎 

ර
𝐶

𝑯 . 𝒅Ԧ𝒍 = 𝑰 

Where: 𝑫 = 𝜺𝑬; 𝑩 = 𝝁𝑯

in the case of free space: 𝜺 = 𝜺𝟎, 𝝁 = 𝝁𝟎



IV. Equations of Electrodynamics

This set of four equations could be expressed as a

double set of decoupled equations since no explicit

relationships exist between electric and magnetic

fields:

ቐ
𝛁. 𝑬 =

𝝆

𝜺𝟎

𝛁 ∧ 𝑬 = 𝟎

; ൝
𝛁. 𝑩 = 𝟎 

𝛁 ∧ 𝑩 = 𝝁𝟎 Ԧ𝒋

This allows us to study electricity and magnetism as

two distinct and separate phenomena as long as the

spatial distributions of charge and current flow

remain constant in time.

Faraday’s law

H. C. Ørsted
1819 experiment

Michael Faraday
1791- 1867, UK

Faraday hypothesized that if a
current produces a magnetic field,
then the converse should also be true:
A magnetic field should produce a
current in a wire.
To test his hypothesis, he conducted
numerous experiments in his
laboratory in London over a period of
about 10 years (1821-1831)



▪ The principle of the experiments conducted by Faraday in his lab in London, consist to

place a conducting loop (sensor) connected to a galvanometer (predecessor

measurement device of voltmeter and amperemeter) next to a conducting coil

connected to a battery (electro-magnet). This latter will produce a magnetic field when

switch is on, with field lines going through the sensor loop.

Michael Faraday
1791- 1867, UK

▪ When the switch is turned on and the coil is crossed by a steady

current, a constant magnetic flux is passing through the

measurement loop:

𝜱[𝑾𝒃] = න
𝑺

𝑩. 𝒅𝑺

But no current was detected by the measurement loop. Even

repeated many times, but without a success to detect any current

produced by magnetic field as Faraday hypothesized.

IV. Equations of Electrodynamics Faraday’s law



▪ After many attempts, Faraday noticed that the galvanometer needle showed a

momentary deflection, indicating the presence of a current for a very short period,

during the switching on or off of the coil circuit connected to the battery.

Michael Faraday
1791- 1867, UK

▪ He also remarked, that the direction of the current in the loop

depends wether the flux is increasing (battery being connected)

or decreasing (battery being disconnected).

▪ Consequently, Faraday deduced that the induced current in the loop appeared only when

the magnetic flux crossing the loop area changes

▪ Besides that, Faraday noticed that if the loop is turning or

moving either closer to or away from the inducing coil. Which is

an equivalent change of the magnetic flux against the loop

(relative movement).

IV. Equations of Electrodynamics Faraday’s law



▪ As an important consequence, when the galvanometer detects the flow of current

through the loop, a voltage has been induced across the terminals of the galvanometer.

Faraday called this voltage “electromotive force” (emf), 𝑽𝒆𝒎𝒇, and the whole phenomenon

is called “Electromagnetic induction”.

Michael Faraday
1791- 1867, UK

▪ This electromotive voltage is related to the magnetic flux

variation by the simple law (Faraday’s law):

𝑽𝒆𝒎𝒇 = −
𝒅𝜱

𝒅𝒕
= −

𝒅

𝒅𝒕
න

𝑺

𝑩. 𝒅𝑺

▪ For a closed conducting loop of N turns, the law could

be generalized to :

𝑽𝒆𝒎𝒇 = −𝑵
𝒅𝜱

𝒅𝒕
= −𝑵

𝒅

𝒅𝒕
න

𝑺

𝑩. 𝒅𝑺

IV. Equations of Electrodynamics Faraday’s law



Accordingly, an EMF can be generated in a closed conducting loop under any of the

following conditions:

▪ A time-varying magnetic field linking a stationary loop; the induced emf is then

called the “transformer emf” 𝑽𝒆𝒎𝒇
𝒕𝒓

▪ A moving loop with a time-varying area (relative to the normal component of B)

in a static field B; the induced emf is then called “the motional emf”, 𝑽𝒆𝒎𝒇
𝒎

▪ A moving loop in a time-varying field 𝑩

The total emf is given by:

𝑽𝒆𝒎𝒇 = 𝑽𝒆𝒎𝒇
𝒕𝒓 + 𝑽𝒆𝒎𝒇

𝒎

With 𝑽𝒆𝒎𝒇
𝒎 = 𝟎 if the loop is stationary, and 𝑽𝒆𝒎𝒇

𝒕𝒓 = 𝟎 if 𝑩 is static

Michael Faraday
1791- 1867, UK

IV. Equations of Electrodynamics Faraday’s law



Let’s examine the case of a conducting loop with unique turn (steady S) existing in

variable magnetic field 𝑩(𝒕). In this situation, the former law of Faraday:

𝑽𝒆𝒎𝒇 = −
𝒅𝜱

𝒅𝒕
= −

𝒅

𝒅𝒕
න

𝑺

𝑩. 𝒅𝑺 = − න
𝑺

𝝏𝑩

𝝏𝒕
. 𝒅𝑺

At the same time, according to integral law of electric field with electric potential:

𝑽𝒆𝒎𝒇 = − ර
𝑪

𝑬. 𝒅Ԧ𝒍

By comparison, and using the Stokes’s theorem, we can write:

ර
𝑪

𝑬. 𝒅Ԧ𝒍 = න
𝑺

𝛁 ∧ 𝑬 . 𝒅𝑺 ≡ − න
𝑺

𝝏𝑩

𝝏𝒕
. 𝒅𝑺

To obtain the Faraday’s law in its differential form:

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕

Michael Faraday
1791- 1867, UK

IV. Equations of Electrodynamics Faraday’s law



When we have a varying magnetic field, the four

equations of electrodynamics are given by:

𝛁. 𝑬 =
𝝆

𝜺𝟎
 𝐺𝑎𝑢𝑠𝑠′𝑠 𝑙𝑎𝑤

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
 (𝐹𝑎𝑟𝑎𝑑𝑎𝑦′𝑠 𝐿𝑎𝑤)

𝛁. 𝑩 = 𝟎 (𝐺𝑎𝑢𝑠𝑠 𝐿𝑎𝑤 𝑓𝑜𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑠𝑚)

𝛁 ∧ 𝑩 = 𝝁𝟎 Ԧ𝒋 (𝐴𝑚𝑝𝑒𝑟𝑒′𝑠 𝐿𝑎𝑤)

This also assumes that the magnetic field is

induced by a time-varying current 𝑰(𝒕).

Charge-Current continuity relation:

In time-varying case, it is possible to connect the

charge density 𝝆 to the current Ԧ𝒋. This is done by

considering the definition of an electric current:

𝑰 = −
𝒅𝑸 𝒕

𝒅𝒕
= −

𝒅

𝒅𝒕
න

𝑽

𝝆. 𝒅𝑽 (𝟓)

The sign (-) is introduced here to relate the

conventional sense of the current with the

variation amount of elementary charged particles

(electrons).

Let’s now consider the current density:

𝑰 = ර
𝑺

Ԧ𝑱. 𝒅𝑺 (𝟔)

IV. Equations of Electrodynamics Charge continuity



Charge-Current continuity relation:

To compare both equations (5) and (6), we need

only to change the surface integral into volume

integral by using divergent theorem for eq. 6:

𝑰 = ර
𝑺

Ԧ𝑱. 𝒅𝑺 = න
𝑽

𝛁. Ԧ𝑱 𝒅𝑽

Now when compared to eq. 5:

𝑰 = −
𝒅𝑸 𝒕

𝒅𝒕
= −

𝒅

𝒅𝒕
න

𝑽

𝝆. 𝒅𝑽 = − න
𝑽

𝝏𝝆

𝝏𝒕
. 𝒅𝑽

It comes that:

𝜵. Ԧ𝑱 = −
𝝏𝝆

𝝏𝒕
𝜵. Ԧ𝑱 +

𝝏𝝆

𝝏𝒕
= 𝟎

Known as “Charge continuity equation”

In the case of time-conservative charge density:

𝝆 ≠ 𝝆(𝒕)

We get : 𝜵. Ԧ𝑱 = 𝟎

It means that the net current flowing out of the

volume is zero, or equivalently that, the incoming

flow into V is equal to the outcoming one.

IV. Equations of Electrodynamics Charge continuity



Charge-Current continuity relation:

From the previous result, of constant flow:

𝜵. Ԧ𝑱 = 𝟎

We can return to the integral form to find that:

𝜵. Ԧ𝑱 = 𝟎 → න
𝑺

Ԧ𝒋. 𝒅𝑺 = 𝟎

Known as “Kirchhoff’s current law”.

The discrete form of this law is encountered in

circuits analysis as “nodes law”:

෍

𝒏

𝑰𝒏 = 𝟎

It will be only sufficient to consider the junction of

connected conducting wires as a volume enclosed

into a surface and different currents are flow

to/from it.

IV. Equations of Electrodynamics Charge continuity



V. Maxwell’s Equations Maxwell correction

Let’s consider again the electrodynamics set of

equations:

𝛁. 𝑬 =
𝝆

𝜺𝟎
 𝑰 𝐺𝑎𝑢𝑠𝑠′𝑠 𝑙𝑎𝑤

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
 𝑰𝑰(𝐹𝑎𝑟𝑎𝑑𝑎𝑦′𝑠 𝐿𝑎𝑤)

𝛁. 𝑩 = 𝟎 𝑰𝑰𝑰(𝐺𝑎𝑢𝑠𝑠 𝐿𝑎𝑤 𝑓𝑜𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑠𝑚)

𝛁 ∧ 𝑩 = 𝝁𝟎
Ԧ𝑱 𝑰𝑽(𝐴𝑚𝑝𝑒𝑟𝑒′𝑠 𝐿𝑎𝑤)

When applying the divergent of equations II and IV,

we will find:

𝛁. 𝛁 ∧ 𝑬

=𝟎,∀𝑬

= 𝛁. −
𝝏𝑩

𝝏𝒕
= −

𝝏

𝝏𝒕
𝛁. 𝑩

=𝟎 (𝑰𝑰𝑰)

= 𝟎

Now, when applying the same action on equation IV:

𝛁. 𝛁 ∧ 𝑩

=𝟎,∀𝑩

= 𝛁. 𝝁𝟎 Ԧ𝒋 = 𝝁𝟎𝛁. Ԧ𝒋 = 𝝁𝟎𝛁. Ԧ𝒋
?

In fact, the quantity 𝛁. Ԧ𝒋 does not vanish for all Ԧ𝒋,

only for special cases corresponding to ൗ𝝏𝝆
𝝏𝒕 = 𝟎,

according to charge continuity equation.

To prevent this, Maxwell proposed

to add a term which could cancel

the divergent of the current density:

𝑱′ = Ԧ𝑱 + 𝑮 in such a way that:

𝜵. 𝑱′ = 𝜵. Ԧ𝑱 + 𝜵. 𝑮 = 𝟎

This will give the following result:

𝜵. 𝑮 = −𝜵. Ԧ𝑱 =
𝝏𝝆

𝝏𝒕

James C. Maxwell
1831- 1897, UK



V. Maxwell’s Equations Maxwell correction

5. Maxwell correction of Ampere law:

This new term, will ingeniously ensure the complete

relationship (in both senses) between electric and

magnetic fields.

According to Gauss’s law: 𝛁. 𝑬 =
𝝆

𝜺𝟎
(Eq. I), the Maxwell

condition could be rewritten as:

𝜵. 𝑮 = −𝜵. Ԧ𝑱 =
𝝏𝝆

𝝏𝒕
=

𝝏𝑫

𝝏𝒕
=

𝝏 𝜺𝟎𝛁. 𝑬

𝝏𝒕
= 𝛁. 𝜺𝟎

𝝏𝑬

𝝏𝒕

This implies that:

𝑮 = 𝜺𝟎

𝝏𝑬

𝝏𝒕
Finally, we get:

𝑱′ = Ԧ𝑱 + 𝑮 = Ԧ𝑱 + 𝜺𝟎

𝝏𝑬

𝝏𝒕

Consequently, the new version of eq. IV:

𝛁 ∧ 𝑩 = 𝝁𝟎 Ԧ𝒋′ = 𝝁𝟎
Ԧ𝑱 + 𝝁𝟎𝜺𝟎

𝝏𝑬

𝝏𝒕

And, when applying the divergent :

𝛁. 𝛁 ∧ 𝑩

=𝟎,∀𝑩

= 𝛁. 𝝁𝟎𝑱′ = 𝝁𝟎𝛁. 𝑱′ = 𝝁𝟎𝛁. Ԧ𝑱 + 𝝁𝟎𝜺𝟎𝛁.
𝝏𝑬

𝝏𝒕
=𝟎 (𝒄𝒉𝒂𝒓𝒈𝒆 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒊𝒕𝒚)

The term 𝑮, known also as “Maxwell correction”, is

called the “displacement current”. The reduced

form of the equation IV, using both 𝑯 and 𝑫 fields :

𝛁 ∧ 𝑯 = Ԧ𝑱 +
𝝏𝑫

𝝏𝒕

The new set of electrodynamics equations could be

now completed and finalized, as Maxwell’s

Equations.

V. Maxwell’s Equations



• Maxwell’s equations (1865):

J.C. Maxwell

(1831-1879, UK)

(1) 𝜵. 𝑬 =
𝝆

𝜺𝟎
  Maxwell-Gauss

(2) 𝜵 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
  Maxwell-Faraday

(3) 𝜵. 𝑩 = 𝟎  Maxwell-Thomson

(4) 𝜵 ∧ 𝑩 = 𝝁𝟎
Ԧ𝑱 + 𝝁𝟎𝜺𝟎

𝝏𝑬

𝝏𝒕
 Maxwell-Ampère

The present days vector

version of Maxwell’s

equations were elaborated

by his fellow citizen, the

physicist O. Heaviside in

1884.

V. Maxwell’s Equations Heaviside formulation



V. Maxwell’s Equations

Maxwell’s equations:

The electromagnetism now are well described by the set of Maxwell’s equations:

𝛁. 𝑬 =
𝝆

𝜺𝟎
 𝑰 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐺𝑎𝑢𝑠𝑠 𝑙𝑎𝑤

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
 𝑰𝑰(𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝐿𝑎𝑤)

𝛁. 𝑩 = 𝟎 𝑰𝑰𝑰(𝐺𝑎𝑢𝑠𝑠 𝐿𝑎𝑤 𝑓𝑜𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑠𝑚)

𝛁 ∧ 𝑩 = 𝝁𝟎
Ԧ𝑱 + 𝝁𝟎𝜺𝟎

𝝏𝑬

𝝏𝒕
 𝑰𝑽(𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐴𝑚𝑝𝑒𝑟𝑒 𝐿𝑎𝑤)

These equations are also known as Maxwell equations for time-varying fields 𝑬(𝒕) and 𝑩(𝒕).



V. Maxwell’s Equations

Maxwell’s equations:

The compact form without electromagnetic

constants, by introducing density current 𝑫 and

magnetic field 𝑯:

𝛁. 𝑫 = 𝝆 𝑰 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐺𝑎𝑢𝑠𝑠 𝑙𝑎𝑤

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
 𝑰𝑰(𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝐿𝑎𝑤)

𝛁. 𝑩 = 𝟎 𝑰𝑰𝑰(𝐺𝑎𝑢𝑠𝑠 𝐿𝑎𝑤 𝑓𝑜𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑠𝑚)

𝛁 ∧ 𝑯 = Ԧ𝑱 +
𝝏𝑫

𝝏𝒕
 𝑰𝑽(𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐴𝑚𝑝𝑒𝑟𝑒 𝐿𝑎𝑤)

The integral forms of previous equations of

Maxwell are given in compact expressions:

ර
𝑺

𝑫. 𝒅𝑺 = 𝑸 ( 𝑰)

ර
𝑪

𝑬. 𝒅Ԧ𝒍 = − න
𝑺

𝝏𝑩

𝝏𝒕
. 𝒅𝑺 ( 𝑰𝑰)

ර
𝑺

𝑩. 𝒅𝑺 = 𝟎 (𝑰𝑰𝑰)

ර
𝑪

𝑯. 𝒅Ԧ𝒍 = න
𝑺

Ԧ𝑱 +
𝝏𝑫

𝝏𝒕
. 𝒅𝑺 (𝑰𝑽)



V. Maxwell’s Equations

Maxwell’s equations:

The compact form without electromagnetic

constants, by introducing density current 𝑫 and

magnetic field 𝑯:

𝛁. 𝑫 = 𝝆 𝑰 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐺𝑎𝑢𝑠𝑠 𝑙𝑎𝑤

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
 𝑰𝑰(𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝐿𝑎𝑤)

𝛁. 𝑩 = 𝟎 𝑰𝑰𝑰(𝐺𝑎𝑢𝑠𝑠 𝐿𝑎𝑤 𝑓𝑜𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑠𝑚)

𝛁 ∧ 𝑯 = Ԧ𝑱 +
𝝏𝑫

𝝏𝒕
 𝑰𝑽(𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐴𝑚𝑝𝑒𝑟𝑒 𝐿𝑎𝑤)

Maxwell's equations on a plaque on his 
statue in Edinburgh
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