Matter and Computer Sciences Faculty 2024/2025

Chemistry Department

Physico-Chemical Analysis Techniques

Exercise Series 1

Doctor: KHERROUBI SEDDIK

Problem 1

We study the sedimentation of a red blood cell in blood (Plasma) under the effect of gravity.

- 1. Draw the diagram and analyze all the forces acting on the red blood cell.
- 2. Calculate the sedimentation velocity (v1) in the blood.
- 3. What is the time (t) required for the red blood cell to travel 10 cm?

Now we study the sedimentation of a red blood cell in blood through centrifugation.

- 4. Provide the expression for the sedimentation velocity v2 of the red blood cell as a function of acceleration (γ).
- 5. Given that the average radius of centrifugation is r = 10 cm, and the rotation speed of the centrifuge is ($\omega = 15000$ revolutions/min), calculate the centrifugal acceleration, then the sedimentation velocity v2 of the red blood cell.
- 6. Compare quantitatively v1 and v2.

Given: $\rho_{GR} = 1.30.10^3 \text{ kg/m}^3$, $r_{GR} = 2 \ \mu\text{m}$, $\rho_{Plasma} = 1.06.10^3 \ \text{kg/m}^3$, $\eta_{Plasmaa} = 10^{-3} \ \text{Pa.s}$ and $g = 9.81 \ \text{m/s}^2$

Problem 2:

During the distillation of a mixture of unknown components, the graph below was obtained. It represents the variation of the temperature at the top of the column as a function of time. Determine the components of this mixture using the table and the graph below.

SUBSTANCES:
Acetone
Benzene
Chloroform
Water
Ethanol
Methanol,
Carbon Tetrachloride
(Tetra chlorométhane : francais)

Problem 3:

The partition coefficient of iodine (I₂) between two immiscible solvents, tetrachloromethane and water, is equal to 100 at 25°C. To 10 ml of an aqueous iodine solution at 10 g/L, 10 ml of tetrachloromethane (CCl₄) is added.

• Determine the concentration of iodine in tetrachloromethane and in water after decantation.

Given: I_2 is more soluble in tetrachloromethane than in water.

Problem 4:

We want to extract benzoic acid from a beverage using a solvent. We have three solvents available: dichloromethane, ethanol, and diethyl ether.

Solvent	Eau	Dichloromethane	ethanol	diethyl ether
Solubility (benzoic acid)	Poor	Average	Good	Good
Density	1	1.3	0.8	0.6
Miscibility in water	/	Immiscible	miscible	Immiscible

- 2- Which solvent is suitable for this operation (extraction)?
- 3- In a separatory funnel, we introduce a volume $V_0=40$ of the solution S_0 of benzoic acid with an initial concentration of solute $C_0=10^{-2}$ mol/L. What is the amount of substance of benzoic acid?
- 4- We add a volume V=10 ml of dichloromethane. The funnel is sealed, shaken, and the mixture is allowed to settle. Describe what is observed, providing justification.
- 5- We collect V₁=40 ml of the aqueous phase and titrate the benzoic acid it contains using a sodium hydroxide solution. The concentration of benzoic acid in this aqueous phase is $C_{aq}=10^{-3}$ mol/L. What is the amount of benzoic acid remaining in this aqueous phase? Deduce the amount transferred into the organic phase and its concentration.
- 6- Calculate the partition coefficient k and the extraction yield.

Polar Solvents

Name	Molecular Formula	Dipole Moment (D)	Boiling Point (°C)	Density (g/mL)	Appearance	
Methanol	CH ₃ OH	1.70	64.7	0.79	Colorless	
Ethanol	C ₂ H ₅ OH	1.69	78.37	0.79	Colorless	
Acetone	(CH ₃) ₂ CO	2.88	56.05	0.79	Colorless	
Water	H ₂ O	1.85	100	1.00	Colorless	
Acetonitrile	CH ₃ CN	3.92	81.6	0.79	Colorless	
Dimethyl Sulfoxide (DMSO)	(CH ₃) ₂ SO	3.96	189	1.10	Colorless	
Tetrahydrofuran (THF)	C4 H8 O	1.63	66	0.89	Colorless	
Dimethylformamide (DMF)	C ₃ H ₇ NO	3.82	153	0.95	Colorless	
Isopropanol	C3 H8 O	1.66	82.6	0.79	Colorless	
Ethylene Glycol	C ₂ H ₆ O ₂	2.30	197.3	1.11	Colorless	
Glycerol	C ₃ H ₈ O ₃	2.60	290	1.26	Colorless	
Formamide	CH ₃ NO	3.73	210	1.13	Colorless	
N-Methyl-2-pyrrolidone (NMP)	C ₅ H ₉ NO	4.09	202	1.03	Colorless	
Methoxyethanol	C ₃ H ₈ O ₂	1.80	124	0.96	Colorless	
Pyridine	C ₅ H ₅ N	2.19	115.2	0.98	Colorless to Yellow	
Propylene carbonate	C4 H6 O3	4.94	242	1.20	Colorless	
Nitrobenzene	C ₆ H ₅ NO ₂	4.22	210.9	1.20	Pale Yellow	
Acetic Acid	СН3 СООН	1.74	118.1	1.05	Colorless	
Butanol	C ₄ H _{1 0} O	1.66	117.7	0.81	Colorless	
Cyclohexanol	C ₆ H _{1 2} O	1.67	161.1	0.96	Colorless	

Non-Polar Solvents

Name	Molecular Formula	Dipole Moment (D)	Boiling Point (°C)	Density (g/mL)	Appearance
Hexane	C ₆ H _{1 4}	0.00	68.7	0.66	Colorless
Toluene	С ₇ Н ₈	0.36	110.6	0.87	Colorless
Benzene	С ₆ Н ₆	0.00	80.1	0.88	Colorless
Diethyl Ether	C ₄ H _{1 0} O	1.15	34.6	0.71	Colorless
Chloroform	CHCl ₃	1.04	61.2	1.48	Colorless
Carbon Tetrachloride	CCl ₄	0.00	76.7	1.59	Colorless
Cyclohexane	C ₆ H _{1 2}	0.00	80.7	0.78	Colorless
Petroleum Ether	C ₅ H _{1 2} (variable)	0.00	36-60	0.64-0.66	Colorless
n-Heptane	C ₇ H _{1 6}	0.00	98.4	0.68	Colorless
n-Octane	C ₈ H _{1 8}	0.00	125.6	0.70	Colorless
Dichloromethane (DCM)	CH ₂ Cl ₂	1.60	39.6	1.33	Colorless
Carbon Disulfide	CS ₂	0.00	46.3	1.26	Colorless
Tetrafluoromethane	CF ₄	0.00	-128	1.96 (gas at STP)	Colorless
Ethylbenzene	C ₆ H ₅ C ₂ H ₅	0.60	136.2	0.87	Colorless
Decane	C ₁₀ H ₂₂	0.00	174.1	0.73	Colorless
Pentane	C ₅ H _{1 2}	0.00	36.1	0.63	Colorless
Nonane	C ₉ H _{2 0}	0.00	150.8	0.72	Colorless
Cyclopentane	C ₅ H _{1 0}	0.00	49.2	0.75	Colorless
Isooctane	C ₈ H _{1 8}	0.00	99.2	0.69	Colorless
1,2-Dichloroethane	C ₂ H ₄ Cl ₂	1.80	83.5	1.25	Colorless

1. Aqueous phase

The aqueous phase refers to the part of a system in which water is the main solvent. It typically contains solutes dissolved in water and is characterized by its hydrophilic properties. For example, in a liquid mixture, the aqueous phase is the part where water is predominant.

2. Organic phase

The organic phase refers to the part of a system where an organic solvent (non-aqueous) is used, such as hydrocarbons, alcohols, or ethers. This phase often contains organic compounds and is hydrophobic, meaning it does not mix well with water.

3. Solution

A solution is a homogeneous mixture of two or more substances in which one substance (the solute) is dissolved in another (the solvent). For example, salt dissolved in water constitutes a saline solution.

4. Suspension

A suspension is a heterogeneous mixture in which small solid particles are dispersed in a liquid but are not completely dissolved. The particles will eventually settle at the bottom if the suspension is left to rest. For example, a mixture of water and sand is a suspension.

5. Colloid

A colloid is a dispersed system in which particles of one material (colloidal) are dispersed in another material (usually a liquid) and have a size between that of a solution and that of a suspension. Colloidal particles do not easily settle and can remain suspended for long periods. A common example of a colloid is milk.

6. Homogeneous solution

A homogeneous solution is a solution in which the solute is evenly distributed throughout the solvent, such that the entire mixture has a uniform composition. For example, a solution of sugar dissolved in water, where the sugar is completely dissolved.

7. Heterogeneous solution

A heterogeneous solution is a mixture whose components are not uniformly distributed. In a heterogeneous solution, it is possible to visually distinguish or physically separate the different phases or components. For example, vinaigrette containing oil and vinegar is a heterogeneous solution.