Chapter 3

Process Synchronization Using
Semaphores

N

Reminder

* Don’t forget that:

— You have to Visit the cours page at:
« http://moodle.univ-dbkm.dz/course/view.php?id=5142

— The text book :

- .

Systémes Systémes
d’exploitation d’exploitation

T Avec plus de 400 exercices

" -) i
! s
-~ '::,:{ N r= “
- T Sopesticaen)
. o Loswee B > s
a i %

Slide 2 of 19

INTRODUCTION

* The solutions proposed for the mutual exclusion problem cannot be
used when dealing with more complex problems. In these problems,
synchronization is at issue in its broadest sense. In other words, a
process acts on one or more other processes by -and

e Synchronization tools aim to control the competition and evolution

of processes. They also play a role in achieving cooperation in
general.

— Coopération= Communication +synchronization

e The goal of synchronization tools is to avoid active waiting,
"processor monopolization in an empty wait loop".

Slide 3 of 19

SEMAPHORE NOTION
* PRINCIPLE. The principle is to control synchronization by using
an abstract data type called a semaphore..

* DEFINITION.

— A semaphore is an integer variable that, once initialized, can only
be used or modified by two atomic operations.

— These two operations are P and V, which execute in mutual
exclusion.

— The state of this variable is used to determine whether or not a
process can continue its execution.

— Processes that cannot continue their execution are placed in a
gueue associated with the semaphore and enter the blocked
state. Slide 4 of 19

SEMAPHORE DECLARATION

Semaphore declaration.

Type Semaphore = Record

Valeur: Integer
L: List of process; {Process blocked behind the semaphore}

END:

{VAL is always an integer indicating the

Var Sem : Semaphore initial value VAL ; number of processes that can use the

semaphore without blncking}

Slide 5 of 19

SEMAPHORE DECLARATION

The semaphore is manipulated by two primitives P and V

Primitive P (Var Sem : semaphore)
Begin
Sem.valeur:=Sem.valeur-1;
If Sem.valeur < 0 then
bloquer le processus {le mettre dans la liste associée au sémaphore"Sem.L"}

End;

Primitive V (Var Sem : semaphore)

Begin

Sem.valeur:=Sem.valeur+1;

If Sem.valeur <= 0 then
débloquer un processus de la liste L ;
{retirer un processus de la liste associée au sémaphore "Sem.L",
et activer ce processus retiré}

End ;

Slide 6 of 19

PROPERTIES OF SEMAPHORES

The definition of a semaphore and the P and V primitives have the following
consequences:

A semaphore cannot be initialized to a negative value, but it can become
negative after a certain number of P operations.

* A process that invokes the V primitive on a semaphore will wake up one
other process blocked behind this semaphore, if its value is less than or
equal to 0.

* Invoking the P primitive on a semaphore by a process can have one of the
following effects:

— The process will be blocked and put in the list associated with the
semaphore; when the value of the semaphore is less than zero.

— When the value of the semaphore is greater than or equal to zero; the
process continues its execution normally. YideFof1p

/ PROPERTIES OF SEMAPHORES

i f
o/
o A0
/s
2
il

 The value of a semaphore denotes:

— Let the number of processes blocked behind this semaphore (value
<0),

— Let the number of processes that can execute the P primitive
without being blocked (value>=0).

I

* The correct use of semaphores and the P and V primitives
can be used to solve a variety of synchronization problems.
We will illustrate this by providing several classic examples of
semaphore usage.

i

Slide 8 of 19

ORDER RELATIONS BETWEEN TWO PROCESSES

* HYypPOTHESIS: Let us consider a process PO whose
execution is dependent on the emission of a signal by

process P1. Process 70

Begin

End:

Process PI

Begin

End:

* Solution: We define a semaphore called signal,

initialized to O.

Slide 9 of 19

ORDER RELATIONS BETWEEN TWO PROCESSES

e Var signal: Sémaphore initial value 0;

Process PO ; Process PI;

Begin Begin
Al; A2;.....;An; B1;B2;.....;Bm;
P(signal); V(signal);
............. ; -

End ; End ;

In this example, two cases can occur :

e Case 1: Process PO is already blocked on the P(signal) primitive when the
signal arrives. When process P1 executes the V(signal) primitive, it wakes
up process PO.

 Case 2: Process PO is active when the signal is emitted (it is executing
instruction Ai). It is as if the signal were memorized; in fact, the value of
the semaphore signal is set to 1 and when process PO executes the
P(signal) primitive, it will not block. Slle 10of 16

MUTUAL EXCLUSION PROBLEM FOR ACCESS TO A CRITICAL
SECTION

* HYPOTHESIS: Let us consider two processes PO
and P1, competing for entry to a critical section.

* SOLUTION: Mutual exclusion can be guaranteed
by a semaphore initialized to 1 (often Mutex is
the symbolic name given to this semaphore).

Slide 11 of 19

MUTUAL EXCLUSION PROBLEM FOR ACCESS TO A CRITICAL

SECTION
* On Program Exclusionmutuelle;
Var Mutex : Semaphore Initial Value = 1;
Process PO ; Process PI;
Begin Begin
P(Mutex); P(Mutex);
Section critique; Section critique;
V(mutex); V(mutex);
End ; End;
Begin
ParBegin
PO ; Pl1
ParEnd;
End;

Slide 12 of 19

PRODUCER-CONSUMER PROBLEM

HypOoTHESIS: Consider two categories of processes: producers and

FThese are producers that produce objects (any value) and deposit them
in a shared memory called. Buffer.

Lonsumer processes use the values deposited in the buffer.

The buffer is of limited size N.

SYNCHRONIZATION CONSTRAINTS: (Synchronization scheme)

The operation of these two categories of processes must meet the
following constraints:

@Producers do not deposit objects when the buffer is full.

Lonsumers do not consume from the buffer when it is empty.

@Dnly one process can access the buffer at a time.

@bjects should not be lost or consumed twice. Slife130f15

PRODUCER-CONSUMER PROBLEM

Program ProducteursConsommateurs;
SOLUTION: Use of three semaphores. e
. [Var Tampon : Array [0..N-1] of objet;
e [Plein Full blocks production Mutex : Semaphore Initial Value = 1;
Vide :Semaphore Initial Value = N;
I i Plein : Semaphore Initial Value = 0;
 A/ide Empty blocks consumption proces P s Grmtar
« @Mutex ensures mutual exclusion for g """ e
access to the buffer. e ety | T e
P(Vide) P(Mutex)
P(Mutex) Retirer(tampon , objetconsomme);
Deposer{objetproduit,tampon); V(Mutex)
V(Mutex) V(Vide)
V(Plein) consommer(objetconsomme);
Until Fin= true; Until Fin= true;
End;
End:
* Consumption and production are done
outside the critical section in order to | " . sz rodcers . Podcer
minimize the time spent in the critical | pugmg " rommeers CRommEers.... oK)
End;

section.

Slide 14 of 19

READERS-WRITERS PROBLEM

HypoTHESIS: Consider two categories of processes that access a single

shared resource (file, database).

FThe first category represents Readers: they are only allowed to read
the resource.

FIThe second category, called Writers, can read and update the
resource.

SYNCHRONIZATION CONSTRAINTS: (Synchronization scheme)
RAvoid simultaneous access of writer processes to the resource.

PAvoid simultaneous access of a writer process with one or more
reader processes.

[Reader processes can access the resource simultaneously.

Slide 15 of 19

READERS-WRITERS PROBLEM

SOLUTION:
e [Readers are not in mutual exclusion.

e Bllectcompteur counts the number of readers using the resource
simultaneously.

e Rllectcompteur cannot be replaced by the value of a semaphore
because the number of reader processes is not limited.

e Use of two semaphores.
* [Redact which guarantees mutual exclusion between writers.

e PIMutex semaphore of mutual exclusion between readers that
protects the Lectcompteur variable.

Slide 16 of 19

READERS-WRITERS PROBLEM

Program LecteursRedacteurs;

var Lectcompteurinteger;
Mutex : Semaphore Initial Value = 1;
Redact : Semaphore Initial Value = 1;

Process [acfeur =i Process Redactecir-§;

Begin Begin

P{Mutex) P(Redact);
Lectcomptewr. =Lectcomiptewsr+ 1;
IF Lectcompteur =1 then P{Redact); ECRITURE;
ViMutex);
V({Redact);
LECTURE;

P{Mutex) End :
Lectcomptewr. =Lecdtcomptewsr-1;

IF Lectcompteur =0 then WRedact);
Vi{Mutex);

ParEnd; Slide 17 of 19

FIVE-DINING PHILOSOPHERS PROBLEM

HYPOTHESIS: Five philosophers, gathered to philos
problem to solve at mealtime. Indeed, the meal is
which, according to the savoir vivre of these phil
two forks. However, the table Is only set with 0"
philosophers decide to adopt the following ritual:

fEach philosopher takes a fixed seat.

fAny philosopher who eats uses the right fork and the left fork.

fTwo neighboring philosophers cannot therefore eat at the same time.
fAt any time, each philosopher is in one of the following three states:

Slide 18 of 19

FIVE-DINING PHILOSOPHERS PROBLEM

iV, © HYPOTHESIS:

not use any fork.

A philosopher who decides to eat, and caniu. oauolay I

due to lack of forks. In this case, he waits until the two forks
(right and left) are available.

 If the two forks are available then the philosopher eats. Any
philosopher who eats stops eating after a finite time.

Slide 19 of 19

FIVE-DINING PHILOSOPHERS PROBLEM

F'ﬂ:igran'l philosophes;
Etat: Array [0..4] of (Pense, Afain, Mange);
Mutex : Eunap-lur&:[nlthl 'H'alun = 1;
L d C EH:I'I'.lI"'I' : Array [0..4] of Semaphore Initial Value = 0;

Procedure Prendrefourchettes (12 integer);
Begin

P{MMuotex);
Etat]i]= Afain;
Test(i);

Yi{MdMutex):

P{sempriv[i]):

End; Slide 20 of 19

FIVE-DINING PHILOSOPHERS PROBLEM

Y C Procedure Posefourchette{izinteger);
Begin
PiMutex)

Etat|i]:= Pense:
Test{i+4 mod 5);
Test{i+] mod 5);
ViMutex);
End:

Procedure Test(iinteger);
Eeein

If (Etat[i]= Afain) and (Etat[i+4 mod 5} Mange) and (Etat[i+] mod 5] <=
Mange) Then

Etat [1]= Mange;

Visempriv[i]):
Emnd:

End:

Begin
For i:=0 to 4 Do Etatfi]:= Penser;
ParBegin
Phiviloconhef): Phliosonheft) .. . Philosorferd):
ParEnd;

End; Slide 21 of 19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

