
Process Synchronization Using
Semaphores

Chapter 3

Reminder

• Don’t forget that:

– You have to Visit the cours page at:

⚫ http://moodle.univ-dbkm.dz/course/view.php?id=5142

– The text book :

Slide 2 of 19

INTRODUCTION

• The solutions proposed for the mutual exclusion problem cannot be
used when dealing with more complex problems. In these problems,
synchronization is at issue in its broadest sense. In other words, a
process acts on one or more other processes by blocking and
unlocking..

• Synchronization tools aim to control the competition and evolution
of processes. They also play a role in achieving cooperation in
general.

– Coopération= Communication +synchronization

• The goal of synchronization tools is to avoid active waiting,
"processor monopolization in an empty wait loop".

Slide 3 of 19

SEMAPHORE NOTION

• PRINCIPLE. The principle is to control synchronization by using
an abstract data type called a semaphore..

• DEFINITION.

– A semaphore is an integer variable that, once initialized, can only
be used or modified by two atomic operations.

– These two operations are P and V, which execute in mutual
exclusion.

– The state of this variable is used to determine whether or not a
process can continue its execution.

– Processes that cannot continue their execution are placed in a
queue associated with the semaphore and enter the blocked
state. Slide 4 of 19

SEMAPHORE DECLARATION

Semaphore declaration.

Slide 5 of 19

SEMAPHORE DECLARATION

The semaphore is manipulated by two primitives P and V

Slide 6 of 19

PROPERTIES OF SEMAPHORES
The definition of a semaphore and the P and V primitives have the following
consequences:

• A semaphore cannot be initialized to a negative value, but it can become
negative after a certain number of P operations.

• A process that invokes the V primitive on a semaphore will wake up one
other process blocked behind this semaphore, if its value is less than or
equal to 0.

• Invoking the P primitive on a semaphore by a process can have one of the
following effects:

– The process will be blocked and put in the list associated with the
semaphore; when the value of the semaphore is less than zero.

– When the value of the semaphore is greater than or equal to zero; the
process continues its execution normally. Slide 7 of 19

PROPERTIES OF SEMAPHORES

• The value of a semaphore denotes:

– Let the number of processes blocked behind this semaphore (value
<0),

– Let the number of processes that can execute the P primitive
without being blocked (value>=0).

• The correct use of semaphores and the P and V primitives
can be used to solve a variety of synchronization problems.
We will illustrate this by providing several classic examples of
semaphore usage.

Slide 8 of 19

ORDER RELATIONS BETWEEN TWO PROCESSES

• HYPOTHESIS: Let us consider a process P0 whose
execution is dependent on the emission of a signal by
process P1.

• Solution: We define a semaphore called signal,
initialized to 0. Slide 9 of 19

ORDER RELATIONS BETWEEN TWO PROCESSES

• Var signal: Sémaphore initial value 0;

In this example, two cases can occur :

• Case 1: Process P0 is already blocked on the P(signal) primitive when the
signal arrives. When process P1 executes the V(signal) primitive, it wakes
up process P0.

• Case 2: Process P0 is active when the signal is emitted (it is executing
instruction Ai). It is as if the signal were memorized; in fact, the value of
the semaphore signal is set to 1 and when process P0 executes the
P(signal) primitive, it will not block. Slide 10 of 19

MUTUAL EXCLUSION PROBLEM FOR ACCESS TO A CRITICAL

SECTION

• HYPOTHESIS: Let us consider two processes P0
and P1, competing for entry to a critical section.

• SOLUTION: Mutual exclusion can be guaranteed
by a semaphore initialized to 1 (often Mutex is
the symbolic name given to this semaphore).

Slide 11 of 19

MUTUAL EXCLUSION PROBLEM FOR ACCESS TO A CRITICAL

SECTION
• On

Slide 12 of 19

PRODUCER-CONSUMER PROBLEM

HYPOTHESIS: Consider two categories of processes: producers and
consumers
ƒThese are producers that produce objects (any value) and deposit them
in a shared memory called. Buffer.
ƒConsumer processes use the values deposited in the buffer.
ƒThe buffer is of limited size N.

SYNCHRONIZATION CONSTRAINTS: (Synchronization scheme)
The operation of these two categories of processes must meet the
following constraints:
ƒProducers do not deposit objects when the buffer is full.
ƒConsumers do not consume from the buffer when it is empty.
ƒOnly one process can access the buffer at a time.
ƒObjects should not be lost or consumed twice. Slide 13 of 19

SOLUTION: Use of three semaphores.

• ƒPlein Full blocks production

• ƒVide Empty blocks consumption

• ƒ Mutex ensures mutual exclusion for
access to the buffer.

• Consumption and production are done
outside the critical section in order to
minimize the time spent in the critical
section.

Slide 14 of 19

PRODUCER-CONSUMER PROBLEM

READERS-WRITERS PROBLEM

HYPOTHESIS: Consider two categories of processes that access a single
shared resource (file, database).

ƒThe first category represents Readers: they are only allowed to read
the resource.

ƒ The second category, called Writers, can read and update the
resource.

SYNCHRONIZATION CONSTRAINTS: (Synchronization scheme)

ƒAvoid simultaneous access of writer processes to the resource.

ƒAvoid simultaneous access of a writer process with one or more
reader processes.

ƒReader processes can access the resource simultaneously.
Slide 15 of 19

SOLUTION:

• ƒReaders are not in mutual exclusion.

• ƒ Lectcompteur counts the number of readers using the resource
simultaneously.

• ƒ Lectcompteur cannot be replaced by the value of a semaphore
because the number of reader processes is not limited.

• Use of two semaphores.

• ƒRedact which guarantees mutual exclusion between writers.

• ƒ Mutex semaphore of mutual exclusion between readers that
protects the Lectcompteur variable.

Slide 16 of 19

READERS-WRITERS PROBLEM

Slide 17 of 19

READERS-WRITERS PROBLEM

FIVE-DINING PHILOSOPHERS PROBLEM

• HYPOTHESIS: Five philosophers, gathered to philosophize, have a practical

problem to solve at mealtime. Indeed, the meal is composed of spaghetti

which, according to the savoir vivre of these philosophers, is eaten with

two forks. However, the table is only set with one fork per cover. The

philosophers decide to adopt the following ritual:

• ƒEach philosopher takes a fixed seat.

• ƒAny philosopher who eats uses the right fork and the left fork.

• ƒTwo neighboring philosophers cannot therefore eat at the same time.

• ƒAt any time, each philosopher is in one of the following three states:

Slide 18 of 19

FIVE-DINING PHILOSOPHERS PROBLEM

• HYPOTHESIS:

• Initially all philosophers think. Any philosopher who thinks does

not use any fork.

• A philosopher who decides to eat, and cannot satisfy his desire

due to lack of forks. In this case, he waits until the two forks

(right and left) are available.

• If the two forks are available then the philosopher eats. Any

philosopher who eats stops eating after a finite time.

Slide 19 of 19

• c

Slide 20 of 19

FIVE-DINING PHILOSOPHERS PROBLEM

• c

Slide 21 of 19

FIVE-DINING PHILOSOPHERS PROBLEM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

