
Mutual exclusion between processes

CHAPTER 2

PROBLEM STATEMENT

• PROBLEM: To avoid any incorrect use of a critical
resource, the sequences of instructions that
manipulate it (critical section) in the different
processes must never be executed simultaneously.
The critical sections of each process must be executed
in mutual exclusion.

• SOLUTION: A control must take place during the use of
this type of resource. This control consists of a
protocol that frames the critical sections with special
instruction sequences.

Slide 2 of 21

PROBLEM STATEMENT

Slide 3 of 21

PROBLEM STATEMENT

• The sequence of instructions that precedes the critical section is called
the acquisition protocol. It aims to verify that the process's access to
its critical section is possible and also to deny other processes access
to their critical sections.

• The sequence of instructions that follows the critical section is called
the release protocol. It makes access to the critical resource possible.

• The insertion of control protocols is left to the programmer. For this
purpose, concurrent programming languages offer adequate concepts
such as (Semaphores, monitors).

• Mutual exclusion of processes in their critical sections is only
guaranteed if the acquisition and release protocols are used correctly.

Slide 4 of 21

PROBLEM STATEMENT

• The construction of mutual exclusion protocols is a complex task. In
fact, poorly constructed acquisition and release protocols can lead to
the following problems:

• DEADLOCK: Deadlock is a situation in which processes cannot progress
any further due to a lack of resources.

– Each process holds resources that the other process needs.

• STARVATION: Starvation is a situation in which some processes are
indefinitely blocked while other processes access their critical sections
according to their needs.

– Some processes never access their critical sections.

Slide 5 of 21

PROBLEM STATEMENT

• Controlling competition between processes is equivalent to
finding a solution to the mutual exclusion problem. Any
solution to the mutual exclusion problem can be decomposed
into three steps:

• There are many different approaches to solving the mutual
exclusion problem. However, any solution must guarantee the
following four properties, as stated by Di DIJKSTRA.

Slide 6 of 21

Entrance

Critical Section

Exit

DIJKSTRA'S FOUR PROPERTIES
• 1. MUTUAL EXCLUSION: Only one process can be in its critical

section at a time.

• 2.PROGRESS: If no process is in its critical section, a process
waiting to enter its critical section must be able to do so after
a finite amount of time. In other words, the critical section is
always reachable.

• 3.BOUNDED WAITING: If a process is blocked outside of a critical
section, this blocking must not prevent the entry of another
process into its critical section.

• 4.DEADLOCK FREEDOM: There will never be a situation in which two
or more processes are waiting for each other to release a
resource.

Slide 7 of 21

ALGORITHMIC SOLUTION TO THE

MUTUAL EXCLUSION PROBLEM

• HYPOTHÈSE. The hypothesis
states that we are considering
two processes, P0 and P1,
which compete for a critical
resource R. The two processes
are defined by the following
program:

• The program uses the Parbegin
and Parend instructions to
execute the two processes in
parallel.

Slide 8 of 21

1. Program gestprocess;

1. {Declaration of common variables to PO and P1}

1. Process PO;

1. {Declaration of local variables to PO}

2. BEGIN

3. // Code executed before entering the critical section

4. ...

5. Section critique/R;

6. ...

7. // Code executed after exiting the critical section

8. End;

9. Process P1;

1. {Declaration of local variables to P1}

10. BEGIN

11. // Code executed before entering the critical section

12. ...

13. Section critique/R;

14. ...

15. // Code executed after exiting the critical section

16. End;

2. BEGIN

1. {Initialization of common variables}

2. PARBEGIN

3. PO; P1;

4. PAREND;

3. End;

ALGORITHMIC SOLUTION TO THE MUTUAL EXCLUSION PROBLEM

• FIRST SOLUTION: ALTERNATION

• This solution uses a shared variable called Tour to determine
which process is allowed to enter the critical section. The value
of Tour is either 0 or 1, and the process with the corresponding
number is allowed to enter the critical section.

– Var Tour: (0,1)

– Tour is initialized to 0 or 1.

Slide 9 of 21

ALGORITHMIC SOLUTION TO THE MUTUAL EXCLUSION PROBLEM

• FIRST SOLUTION: ALTERNATION

• T

• Note: There is an active wait in the while loop, where the process repeats the same actions
without results.

• Critique: The second property of Dijkstra is not satisfied.

• Conclusion: False solution.
Slide 10 of 21

• SECOND SOLUTION: PROCESS REQUESTS

• The first solution does not take into account the wishes of the
processes, but only the permission granted to one or the
other. To avoid a process remaining waiting for another that
does not want to access its critical section, the shared
variable Tour can be replaced by a table of indicators called
drapeau. The process Pi that wants to access its critical
section sets its flag to the value True.

– Var Drapeau : array[0..1] of boolean ;
– drapeau is initialized to false for all processes.(for i:=0 to 1 do
drapeau [i]:= false;)

Slide 11 of 21

ALGORITHMIC SOLUTION TO THE MUTUAL EXCLUSION PROBLEM

SOLUTION ALGORITHMIQUE AU PROBLÈME D`EXCLUSION

MUTUELLE
• SECOND SOLUTION: PROCESS REQUESTS

• CRITIQUE. The first property of Dijkstra is not satisfied.

• Conclusion. False solution
Slide 12 of 21

• THIRD SOLUTION:
• In the second solution, processes P0 and P1 can

simultaneously access the table of indicators. To remedy this,
the two instructions (test and assignment) are swapped. In
this case, the table of indicators no longer has the same
meaning.

Slide 13 of 21

ALGORITHMIC SOLUTION TO THE MUTUAL EXCLUSION PROBLEM

• THIRD SOLUTION:

• Critique: The second property of Dijkstra is not satisfied.

• **If both processes execute the first assignment simultaneously, they will then
mutually block each other, making the critical section unreachable.

• Conclusion: False solution.
Slide 14 of 21

ALGORITHMIC SOLUTION TO THE MUTUAL EXCLUSION PROBLEM

• FOURTH SOLUTION: PETERSON'S ALGORITHM

• In this solution, proposed by Peterson, the first and third
propositions are combined. The shared variables are drapeau
and Tour.

• Vars:

• drapeau[0] and drapeau[1] are initialized to false.

• Tour is initialized to a value of 0 or 1.

Slide 15 of 21

ALGORITHMIC SOLUTION TO THE MUTUAL EXCLUSION PROBLEM

• FOURTH SOLUTION: PETERSON'S ALGORITHM

• CRITIQUE. Correct solution because the four Dijkstra properties are
satisfied.

Slide 16 of 21

ALGORITHMIC SOLUTION TO THE MUTUAL EXCLUSION PROBLEM

HARDWARE SOLUTION TO THE MUTUAL EXCLUSION PROBLEM

• A. CASE OF A SINGLE-PROCESSOR MACHINE. Critical sections must
be made indivisible by masking interrupts during their
execution.

• NB: Masking and unmasking interrupts can quickly
become penalizing for the operating system.

Slide 17 of 21

Process Pi

BEGIN

...

Disable interrupts

Critical section

Enable interrupts

...

END

4. SOLUTION MATÉRIELLE AU PROBLÈME D`EXCLUSION MUTUELLE

• B. CASE OF A MULTIPROCESSOR MACHINE. Machines offer special atomic
instructions to solve the mutual exclusion problem for a given variable.
These instructions guarantee the test and update of a variable or the
exchange of the contents of two variables in a single memory cycle.

• The TAS instruction

• The «Test and Set» instruction, also known as TAS for the English
abbreviation Test And Set, can be assimilated to the following function:

Slide 18 of 21

4. SOLUTION MATÉRIELLE AU PROBLÈME D`EXCLUSION MUTUELLE

• B. CASE OF A MULTIPROCESSOR MACHINE.

– The SWAP instruction

– It can be assimilated to the following procedure:

• The TAS and Swap instructions are executed atomically.
Therefore, if two processes execute these instructions
simultaneously, one of them will be blocked. Slide 19 of 21

• 4.1 SOLUTION TO THE MUTUAL EXCLUSION PROBLEM USING TAS..

– Let lock be a common variable to the processes and it is concerned
by the critical section.
• Var lock : boolean ;

• lock := false ;

Slide 20 of 21

Process Pi

BEGIN

...

While TAS(lock)

Critical section

lock := False;

...

END

• 4.2 SOLUTION TO THE MUTUAL EXCLUSION PROBLEM USING SWAP.
• Var verrou : boolean ;

• Verrou :=false ;

Slide 21 of 22

Process Pi;

Var key: Boolean;

Begin

....

key := true;

Repeat SWAP (lock, key); until key = false;

Critical section;

lock := false;

...

End;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

