
CHAPTER 1

Process Concept
(Parallelism, Cooperation, and Competition)

Process Concept
• An operating system executes a variety of programs that

run as a process.

• Process – a program in execution; process execution must
progress in sequential fashion.

• Multiple parts

– The program code, also called text section

– Current activity including program counter, processor registers

– Stack containing temporary data

• Function parameters, return addresses, local variables

– Data section containing global variables

– Heap containing memory dynamically allocated during run time

Process Concept (Cont.)

• Program is passive entity stored on disk (executable

file); process is active

– Program becomes process when an executable file is loaded

into memory

• Execution of program started via GUI mouse clicks,

command line entry of its name, etc.

• One program can be several processes

– Consider multiple users executing the same program

Process in Memory

Memory Layout of a C Program

Process State

• As a process executes, it changes state

–New: The process is being created

–Running: Instructions are being executed

–Waiting: The process is waiting for some event to

occur

–Ready: The process is waiting to be assigned to a

processor

–Terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

• Process state – running, waiting, etc.

• Program counter – location of instruction to next execute

• CPU registers – contents of all process-centric registers

• CPU scheduling information- priorities, scheduling queue

pointers

• Memory-management information – memory allocated to

the process

• Accounting information – CPU used, clock time elapsed

since start, time limits

• I/O status information – I/O devices allocated to process,

list of open files

Information associated with each process(also called task control block)

Process table

• The set of process control blocks forms a table called the

process table.

• The process table is used by the operating system to

manage processes and ensure that they run efficiently

and without interfering with each other. For example, the

operating system uses the process table to schedule

processes, allocate resources to them, and terminate

them when they are finished.

Threads

• So far, process has a single thread of execution

• Consider having multiple program counters per

process

–Multiple locations can execute at once

• Multiple threads of control -> threads

• Must then have storage for thread details, multiple

program counters in PCB

• ..

Single and Multithreaded Processes

Motivation
• Most modern applications are multithreaded

• Threads run within application

• Multiple tasks with the application can be implemented by separate

threads

– Update display

– Fetch data

– Spell checking

– Answer a network request

• Process creation is heavy-weight while thread creation is light-

weight

• Can simplify code, increase efficiency

• Kernels are generally multithreaded

Operations on Processes

• System must provide mechanisms for:

– Process creation

– Process termination

Process Creation
• Parent process create children processes, which, in turn

create other processes, forming a tree of processes

• Generally, process identified and managed via a process

identifier (pid)

• Resource sharing options

– Parent and children share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

• Execution options

– Parent and children execute concurrently

– Parent waits until children terminate

Process Creation (Cont.)

• Address space

– Child duplicate of parent

– Child has a program loaded into it

• UNIX examples

– fork() system call creates new process

– exec() system call used after a fork() to replace the process’

memory space with a new program

– Parent process calls wait()waiting for the child to terminate

A Tree of Processes in Linux

C Program Forking Separate Process

Process Termination
• Process executes last statement and then asks the

operating system to delete it using the exit() system call.

– Returns status data from child to parent (via wait())

– Process’ resources are deallocated by operating system

• Parent may terminate the execution of children processes
using the abort() system call. Some reasons for doing so:

– Child has exceeded allocated resources

– Task assigned to child is no longer required

– The parent is exiting, and the operating systems does not allow

a child to continue if its parent terminates

Process Termination

• Some operating systems do not allow child to exists if its parent has

terminated. If a process terminates, then all its children must also

be terminated.

– cascading termination. All children, grandchildren, etc., are terminated.

– The termination is initiated by the operating system.

• The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information and

the pid of the terminated process

pid = wait(&status);

• If no parent waiting (did not invoke wait()) process is a zombie

• If parent terminated without invoking wait(), process is an orphan

THE ROLE OF COMPETITION AND COOPERATION IN PROCESS

MANAGEMENT

• In a computer system, processes are independent
units of execution that can run concurrently to execute
programs. During their execution, processes may
interact with each other in a variety of ways.

• Interactions between processes can be classified into
two broad categories: cooperation and competition.

Slide 20 of 20

THE ROLE OF COMPETITION AND COOPERATION IN PROCESS

MANAGEMENT

• COOPERATION: occurs when two or more processes work together to
achieve a common goal. This type of interaction can be classified into
two categories: direct cooperation and indirect cooperation.

• Example. Salary calculation and printing of paystubs.

• Direct cooperation: occurs when processes share data or resources. In
this case, processes are aware of each other and can directly access
each other's data or resources.

• Indirect cooperation: occurs when processes exchange messages. In
this case, processes do not need to be aware of each other to
communicate.

Slide 21 of 20

THE ROLE OF COMPETITION AND COOPERATION IN PROCESS

MANAGEMENT

• EXAMPLES:

• Direct cooperation by sharing variables: Two processes can share a
common block of memory to exchange data. For example, two
processes might share a variable to keep track of the current state of a
game.

• Indirect cooperation by exchanging messages: Two processes can send
messages to each other to coordinate their actions. For example, a
process might send a message to another process to request data or to
signal that it is finished with a task.

Slide 22 of 20

• COMPETITION: If processes are not aware of each other, they
ignore each other's existence but may enter into conflicts for
the use of critical resources (shared/common) (memory,
processor, peripheral, file, etc.).

• To resolve conflicts between processes, resource usage rules
are used. These rules aim to serialize the use of a given
resource by processes over time.

• Example. Access to a bank account

Slide 23 of 20

THE ROLE OF COMPETITION AND COOPERATION IN PROCESS

MANAGEMENT

CONCEPT OF CRITICAL SECTIONS

• The code executed by a process can be grouped into
sections. Some of them need to access critical
resources, while others do not. The former are called
critical sections. To avoid access conflicts, a mechanism
is essential to properly synchronize the execution
within critical sections.

• Example: Consider a bank account that is shared by
two processes: P1 and P2. Both processes need to be
able to access the account balance and update it.

Slide 24 of 20

	Slide 1
	Slide 2: Process Concept
	Slide 3: Process Concept (Cont.)
	Slide 4: Process in Memory
	Slide 5: Memory Layout of a C Program
	Slide 6: Process State
	Slide 7: Diagram of Process State
	Slide 8: Process Control Block (PCB)
	Slide 9: Process table
	Slide 10: Threads
	Slide 11: Single and Multithreaded Processes
	Slide 12: Motivation
	Slide 13: Operations on Processes
	Slide 14: Process Creation
	Slide 15: Process Creation (Cont.)
	Slide 16: A Tree of Processes in Linux
	Slide 17: C Program Forking Separate Process
	Slide 18: Process Termination
	Slide 19: Process Termination
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

