CHAPTER 5 SYSTEMS OF LINEAR EQUATIONS

5.1 Introduction to Systems of Linear Equations

5.2 Gaussian Elimination and Gauss-Jordan Elimination

Prepared by Professor Lamamri Abdelkader

• a linear equation in *n* variables:

 $a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = b$ $a_1, a_2, a_3, \dots, a_n, b: \text{ real number}$ $a_1: \text{ leading coefficient}$ $x_1: \text{ leading variable}$

• Notes:

 (1) Linear equations have no products or roots of variables and no variables involved in trigonometric, exponential, or logarithmic functions.

(2) Variables appear only to the first power.

• Ex : (Linear or Nonlinear)

Linear (a)
$$3x + 2y = 7$$
 (b) $\frac{1}{2}x + y - \pi z = \sqrt{2}$ Linear

Linear (c)
$$x_1 - 2x_2 + 10x_3 + x_4 = 0$$
 (d) $(\sin \frac{\pi}{2})x_1 - 4x_2 = e^2$ Linear

r (e)
$$xy + z = 2$$
 (f) $e^{x} - 2y = 4$
not the first power

Nonlinear $(g) \sin x_1 + 2x_2 - 3x_3 = 0$ trig onometric function

Nonlinea

not the first power

Exponential

Nonlinear

onlinear

• a solution of a linear equation in *n* variables:

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + a_{n}x_{n} = b$$

$$x_{1} = s_{1}, x_{2} = s_{2}, x_{3} = s_{3}, \cdot, x_{n} = s_{n}$$
such
$$a_{1}s_{1} + a_{2}s_{2} + a_{3}s_{3} + a_{n}s_{n} = b$$
that

Solution set:

the set of all solutions of a linear equation

• Ex : (Parametric representation of a solution set)

 $x_1 + 2x_2 = 4$

a solution: $(x_1, x_2) = (2, 1)$,

If you solve for x_1 in terms of x_2 , you obtain $x_1 = 4 - 2x_2$,

By letting $x_2 = t$ you can represent the solution set as

$$x_1 = 4 - 2t$$

And the solutions are $\{(4-2t, t) | t \in R\}$ or $\{(s, 2-\frac{1}{2}s) | s \in R\}$

• a system of m linear equations in n variables:

Consistent:

A system of linear equations has at least one solution.

Inconsistent:

A system of linear equations has no solution.

• Notes:

Every system of linear equations has either
(1) exactly one solution,
(2) infinitely many solutions, or
(3) no solution.

• Ex : (Solution of a system of linear equations)

(1)
$$x + y = 3$$

 $x - y = -1$
two intersecting lines
(2) $x + y = 3$
 $2x + 2y = 6$
two coincident lines
(3) $x + y = 3$
 $x + y = 1$
two parallellines

• Ex : (Using back substitution to solve a system in row echelon form)

Sol: By substituting y = -2 into (1), you obtain

$$x - 2(-2) = 5$$

 $x = 1$

The system has exactly one solution: x = 1, y = -2

• Ex : (Using back substitution to solve a system in row echelon form)

Sol: Substitute z = 2 into (2)

$$y + 3(2) = 5$$

 $y = -1$

and substitute y = -1 and z = 2 into (1)

The system has exactly one solution: x = 1, y = -1, z = 2

• Equivalent:

Two systems of linear equations are called **equivalent** if they have precisely the same solution set.

• Notes:

Each of the following operations on a system of linear equations produces <u>an equivalent system</u>.

- (1) Interchange two equations.
- (2) Multiply an equation by <u>a nonzero constant</u>.
- (3) Add a multiple of an equation to another equation.

• Ex : Solve a system of linear equations (consistent system)

Sol:
$$(1) + (2) \rightarrow (2)$$

 $x - 2y + 3z = 9$
 $y + 3z = 5$ (4)
 $2x - 5y + 5z = 17$
 $(1) \times (-2) + (3) \rightarrow (3)$
 $x - 2y + 3z = 9$
 $y + 3z = 5$
 $-y - z = -1$ (5)

(6)

$$(4) + (5) \rightarrow (5) x - 2y + 3z = 9 y + 3z = 5 2z = 4$$

$$(6) \times \frac{1}{2} \rightarrow (6) x - 2y + 3z = 9 y + 3z = 5 z = 2$$

So the solution is x = 1, y = -1, z = 2 (only one solution)

• Ex : Solve a system of linear equations (inconsistent system)

Sol:
$$(1) \times (-2) + (2) \rightarrow (2)$$

 $(1) \times (-1) + (3) \rightarrow (3)$
 $x_1 - 3x_2 + x_3 = 1$
 $5x_2 - 4x_3 = 0$ (4
 $5x_2 - 4x_3 = -2$ (5)

$$\begin{array}{rrrr} (4) \times (-1) + (5) \rightarrow \\ (5) \\ x_1 &- 3x_2 &+ x_3 &= 1 \\ & 5x_2 &- 4x_3 &= 0 \\ \hline 0 &= -2 \end{array}$$
 (a false statement)

So the system has no solution (an inconsistent system).

■ *m×n* matrix:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{3n} \\ \vdots & & & \\ a_{m1} & a_{m2} & a_{m3} & a_{mn} \end{bmatrix} m \text{ rows}$$

• Notes:

- (1) Every entry a_{ij} in a matrix is a number.
- (2) A matrix with <u>*m* rows</u> and <u>*n* columns</u> is said to be of size $m \times n$
- (3) If m = n, then the matrix is called square of order *n*.
- (4) For a square matrix, the entries $a_{11}, a_{22}, \ldots, a_{nn}$ are called
 - the main diagonal entries.

Size • Ex : Matrix 1×1 [2] $\begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$ 2×2 $\begin{bmatrix} 1 & -3 & 0 & \frac{1}{2} \end{bmatrix}$ 1×4 $\begin{bmatrix} e & \pi \\ 2 & \sqrt{2} \\ -7 & 4 \end{bmatrix}$ 3×2

• Note:

One very common use of matrices is to represent a system, of linear equations.

• a system of *m* equations in *n* variables:

 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$ Matrix form: Ax = b

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{3n} \\ \vdots & \vdots & & \\ a_{m1} & a_{m2} & a_{m3} & a_{mn} \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ x_n \end{bmatrix}$$

• Augmented matrix:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & a_{3n} & b_3 \\ \vdots & & & & \\ a_{m1} & a_{m2} & a_{m3} & a_{mn} & b_m \end{bmatrix} = [A \mid b]$$

Coefficient matrix:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{3n} \\ \vdots & & & \\ a_{m1} & a_{m2} & a_{m3} & a_{mn} \end{bmatrix} = A$$

- Elementary row operation:
 - (1) Interchange two rows.
 - (2) Multiply a row by a nonzero constant.
 - (3) Add a multiple of a row to another row.
- Row equivalent:
 - Two matrices are said to be **row equivalent** if one can be obtained from the other by a finite sequence of **elementary row operation**.

$$r_{ij}: R_i \leftrightarrow R_j$$

$$r_i^{(k)}: (k)R_i \rightarrow R_i$$

$$r_{ij}^{(k)}: (k)R_i + R_j \rightarrow R_j$$

• Ex : (Elementary row operation)

$$\begin{bmatrix} 0 & 1 & 3 & 4 \\ -1 & 2 & 0 & 3 \\ 2 & -3 & 4 & 1 \end{bmatrix} \xrightarrow{r_{12}} \begin{bmatrix} -1 & 2 & 0 & 3 \\ 0 & 1 & 3 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -4 & 6 & -2 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix} \xrightarrow{r_{1}^{(\frac{1}{2})}} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix} \xrightarrow{r_{1}^{(\frac{1}{2})}} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 2 & 1 & 5 & -2 \end{bmatrix} \xrightarrow{r_{13}^{(-2)}} \begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 0 & -3 & 13 & -8 \end{bmatrix}$$

- Row-echelon form: (1, 2, 3)
- Reduced row-echelon form: (1, 2, 3, 4)
 - (1) All row consisting entirely of zeros occur at the bottom of the matrix.
 - (2) For each row that does not consist entirely of zeros, the first nonzero entry is 1 (called **a leading 1**).
 - (3) For two successive (nonzero) rows, <u>the leading 1 in the higher</u> row is farther to the left than <u>the leading 1 in the lower row</u>.
 (4) Every column that has a leading 1 has zeros in every position above and below its leading 1.

• Ex : (Row-echelon form or reduced row-echelon form)

23

Gaussian elimination:

The procedure for reducing a matrix to a row-echelon form.

Gauss-Jordan elimination:

The procedure for reducing a matrix to a reduced row-echelon form.

• Notes:

(1) Every matrix has an unique reduced row echelon form.
(2) A row-echelon form of a given matrix is not unique.
(Different sequences of row operations can produce different row-echelon forms.)

• Ex: (Procedure of Gaussian elimination and Gauss-Jordan elimination)

$$\begin{bmatrix} 0 & 0 & -2 & 0 & 8 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & 4 \end{bmatrix} \xrightarrow{r_{12}} \begin{bmatrix} 2 & 4 & -10 & 6 & 12 & 28 \\ 0 & 0 & -2 & 0 & 8 & 12 \\ 2 & 4 & -5 & 6 & -5 & 4 \end{bmatrix}$$

The first nonzero column

• Ex : Solve a system by Gauss-Jordan elimination method (only one solution)

augmented matrix

Sol:

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix} \xrightarrow{r_{12}^{(1)}, r_{13}^{(-2)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & -1 & -1 & -1 \end{bmatrix} \xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{r_{23}^{(1)}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

 Ex : Solve a system by Gauss-Jordan elimination method (infinitely many solutions)

> $2x_1 + 4x_2 - 2x_3 = 0$ $3x_1 + 5x_2 = 1$

Sol: augmented matrix

$$\begin{bmatrix} 2 & 4 & -2 & 0 \\ 3 & 5 & 0 & 1 \end{bmatrix} \xrightarrow{r_1^{(\frac{1}{2})}, r_{12}^{(-3)}, r_2^{(-1)}, r_{21}^{(-2)}} \begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & -3 & -1 \end{bmatrix} \text{ (reduced row - 1)}$$

the corresponding system of equations is $x_1 + 5x_3 = 2$ $x_2 - 3x_3 = -1$

leading variable : x_1, x_2 free variable : x_3

$$x_{1} = 2 - 5x_{3}$$

$$x_{2} = -1 + 3x_{3}$$

Let $x_{3} = t$
 $x_{1} = 2 - 5t$,
 $x_{2} = -1 + 3t$, $t \in I$
 $x_{3} = t$,

So this system has infinitely many solutions.