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1.1  Vectors in R
n

2

a sequence of n real number ),,,( 21 nxxx 

 An ordered n-tuple:

the set of all ordered n-tuple

 n-space:  R
n

R
1  

= 1-space

= set of all real number

n = 1

n = 3 R
3 
= 3-space

= set of all ordered triple of real numbers ),,( 321 xxx

 Ex:



 Notes:

 Ex:

a point

 21, xx

a vector

 21, xx

 0,0

(1) An n-tuple                        can be viewed as a point in R
n 

with the xi’s as its coordinates.

(2) An n-tuple                        can be viewed as a vector

in Rn with the xi’s as its components.

),,,( 21 nxxx 

),,,( 21 nxxx 

),,,( 21 nxxxx 

1.1  Vectors in R
n
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 Vector  spaces:

Let V be a set on which two operations (vector addition and 

scalar multiplication) are defined. If the following axioms are 

satisfied for every  u, v, and w in V and every scalar (real number) 

c and d, then V is called a vector space.

Addition:

(1)  u + v is in V too    (closed under addition)

(2)  u + v = v + u

(3)  u + (v + w) = (u + v) + w

(4)  V has a zero vector 0 such that for every u in V, u+0 = u

(5) For every u in V, there is a vector in V denoted by –u

such that u + (–u) = 0

1.2  Vector Spaces
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Scalar multiplication:

(6)        is in V too  (closed under multiplication by a scalar).uc

(7)                              vuvu ccc  )(

(8) uuu dcdc  )(

(9) uu )()( cddc 

(10) uu )(1

1.2  Vector Spaces
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 Note:

(1) A vector space consists of four entities:

(2)    :V  0 zero vector space

V：nonempty set

c：scalar

( , )

( , )c c

 



u v u v

u u

vector addition

scalar multiplication

 ,,V is then called a vector space

a set of vectors, a set of scalars, and two operations

+

• .

1.2  Vector Spaces
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 Examples of vector spaces:

 ),,,(),,,(),,,( 22112121 nnnn vuvuvuvvvuuu  

(1) n-tuple space: Rn

),,,(),,,( 2121 nn kukukuuuuk  

vector addition

scalar multiplication

1.2  Vector Spaces

(2) n-th degree polynomial space:                

(the set of all real polynomials of degree n or less)

)(xPV n

n

nn xbaxbabaxqxp )()()()()( 1100  

n

n xkaxkakaxkp  10)(
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 Properties of scalar multiplication

Let v be any element of a vector space V, and let c be any

scalar. Then the following properties are true.

vv

0v0v

00

0v









)1(  (4)

or    0  then , If  (3)

  (2)

0  (1)

cc

c

1.2  Vector Spaces
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 Ex 1:

),(),(),( 22112121 vuvuvvuu 

V=R2=the set of all ordered pairs of real numbers defined as:

- vector addition:

- scalar multiplication: )0,(),( 121 cuuuc 

)1 ,1()0 ,1()1 ,1(1 

the set (together with the two given operations) is 

not a vector space

Verify V is not a vector space.

Sol:

Condition (10) is not satisfied

1.2  Vector Spaces
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 Subspace:
),,( V









VW

W 

If : a vector space

: a nonempty subset

),,( W ：a vector space (under the operations of addition and 

scalar multiplication defined in V)

 Then W is a subspace of V

 Trivial subspace:

Every vector space V has at least two subspaces.

(1) Zero vector space {0} is a subspace of  V.

(2)  V is a subspace of V.

1.3  Vector Subspaces
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 Test for a subspace

If W is a nonempty subset of a vector space V, then W is 

a subspace of V if and only if the following conditions hold.

(1) If  u and v are in W, then  u + v is in W (closed under addition).

(2) If u is in W and c is any scalar, then cu is in W (closed under

multiplication by a scalar).

1.3  Vector Subspaces
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 Ex1: Subspace of  R2

   0 0,            (1) 00

origin he through tLines   (2)

2   (3) R

1.3  Vector Subspaces

 Ex2: Show that                                                    , with the standard 

operations, is not a subspace of R
2
.

W )1 ,1(Let   u

   of  subspace  anot    is  2RW

}0 and 0:),{( 2121  xxxxW

       W 1 ,11 ,111 u
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kkccc uuuv  2211

form  in the written becan   if  in     vectorsthe

 ofn combinatiolinear  a called is   space  vector  ain   A vector  

21 vuuu

v

V,,,

V

k

 Linear combination: 

scalars : 21 k,c,,cc 

1.4  Linear Independence

 Ex1: (Finding a linear combination)

321

321

321

,, ofn combinatiolinear  anot  is  2,2)(1,   (b)           

 ,, ofn combinatiolinear  a is  (1,1,1)   (a)  Prove

1,0,1)(   (0,1,2)   (1,2,3)

vvvw

vvvw

vvv







Sol:
321332211 32   (a) vvvvvvw  ccc

332211)( vvvw cccb 
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If S={v1, v2,…, vk} is a set of vectors in a vector

space V, then the span of S is the set of all

linear combinations of the vectors in S,

 the span of a set:  span (S)

)(Sspan  

)in    vectorsof nscombinatiolinear  all ofset   (the

2211

S

Rcccc ikk  vvv 

 a spanning set of a vector space:

If every vector in a given vector space can be

written as a linear combination of vectors in a given

set S, then S is called a spanning set of the vector

space.

1.4  Linear Independence
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 0)(   (1) span

)(   (2) SspanS 

)()(       

,   (3)

2121

21

SspanSspanSS

VSS





 Notes:

VS

SV

V S

VS

 ofset  spanning a is      

by  )(generated spanned is      

)(generates spans   

)(span       





 Notes:

1.4  Linear Independence
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dependent.linearly  called is          then

zeros), allnot  (i.e.,solution   nontrivial a hasequation   theIf (2)

t.independenlinearly  called is          then

)0(solution    trivialonly the hasequation   theIf (1) 21

S

S

ccc k  

 

0vvv

vvv





kk

k

ccc

S





2211

21 ,,,

 Linear Independence (L.I.) and Linear Dependence (L.D.):

: a set of vectors in a vector space V

1.4  Linear Independence
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tindependenlinearly    is     (1) 

dependent.linearly    is  (2) SS  0

  tindependenlinearly    is  (3) v0v   

21   (4) SS 

dependentlinearly   is dependent linearly   is 21 SS 

t independenlinearly   is t  independenlinearly   is 12 SS 

 Notes:

1.4  Linear Independence
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      1 0, 2,,2 1, 0,,3 2, 1, S

 Ex1: (Testing for linearly independent)

0   23

0          2

02            

321

21

31







ccc

cc

cc

 0vvv 332211 ccc

Sol:

Determine whether the following set of vectors in R
3

is L.I. or L.D.

 solution  trivialonly the   0321  ccc

tindependenlinearly   is S

v1 v2 v3

1.4  Linear Independence
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 Basis:

V：a vector space





)(

)(

b

a S spans V  (i.e.,  span(S) = V )

S is linearly independent

Generating

Sets(span V)
Bases

Linearly

Independent

Sets

 Then S is called a basis for V

 Notes:

(1) Ø is a basis for {0}

(2) the standard basis for R3:

{i, j, k}    i = (1, 0, 0),  j = (0, 1, 0),  k = (0, 0, 1)

S ={v1, v2, …, vn}V

If Intersection

1.5  Basis and Dimension
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(3) the standard basis for R
n

:

{e1, e2, …, en}    e1=(1,0,…,0), e2=(0,1,…,0), en=(0,0,…,1)

Ex: R4 {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

(4) the standard basis for Pn(x): {1, x, x2, …, xn}

Ex: P3(x) {1, x, x2, x3}

1.5  Basis and Dimension

20



 Uniqueness of basis representation

If                                 is a basis for a vector space V, then every

vector in V can be written in one and only one way as a linear 

combination of vectors in S.

 nS vvv ,,, 21 

1.5  Basis and Dimension

 Basis and linear dependence

If                                 is a basis for a vector space V, then every

set containing more than n vectors in V is linearly dependent.
 nS vvv ,,, 21 

 Number of vectors in a basis

If a vector space V has one basis with n vectors, then every

basis for V  has n vectors. (All bases for a finite-dimensional

vector space has the same number of vectors.)
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 Finite dimensional:

A vector space V is called finite dimensional,

if it has a basis consisting of a finite number of elements.

 Infinite dimensional:

If a vector space V is not finite dimensional,

then it is called infinite dimensional.

 Dimension:

The dimension of a finite dimensional vector space V  is

defined to be the number of vectors in a basis for V.

V: a vector space S: a basis for V

symbol: dim(V) = #(S) (the number of vectors in S)

1.5  Basis and Dimension
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 Notes:

(1) dim({0}) = 0 = #(Ø)

(2) dim(V) = n , SV

S：a generating set    #(S)  n

S：a L.I. set               #(S)  n

S：a basis                   #(S) = n

(3) dim(V) = n , W is a subspace of V  dim(W)  n 

Generating

Sets
Bases

Linearly

Independent

Sets

#(S) > n #(S) = n #(S) < n

dim(V) = n

1.5  Basis and Dimension
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 Exp:

(1) Vector space  Rn  basis {e1 , e2 ,  , en}

(2) Vector space Pn(x)   basis {1, x, x2,  , xn}

(3) Vector space P(x)     basis {1, x, x2, }

 dim(Rn) = n

 dim(Pn(x)) = n+1

 dim(P(x)) = 

1.5  Basis and Dimension
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 Ex1:

(a) W={(d, c–d, c):  c and d are real numbers}

(b) W={(2b, b, 0):  b is a real number}

Sol:

(a) (d, c– d, c) = c(0, 1, 1) + d(1, – 1, 0)

 S = {(0, 1, 1) , (1, – 1, 0)} (S is L.I. and S spans W)

 S is a basis for W

 dim(W) = #(S) = 2

 S = {(2, 1, 0)} spans W and  S is L.I.

 S is a basis for W

 dim(W) = #(S) = 1

(b)

1.5  Basis and Dimension

   0,1,20,,2 bbb 
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