
APPROACH TO THE DEVELOPMENT OF EXPERT SYSTEMS

CHAPTER V

2

DEVELOPMENT CYCLE

Project
Initialization

System Design
and Analysis

Prototyping
System

Development
Implementation

Post-
Implementation

3

▪ Phase 1: Project Initialization

o Problem Definition

o Needs Analysis

o Evaluation of Alternative Solutions

o Verify if the ES approach is appropriate

o Consider Management Issues

DEVELOPMENT CYCLE

4

▪ Phase 2: System Design and Analysis

o Define a conceptual design

o Define a development strategy

o Identify knowledge sources and ensure cooperation

o Select computer resources

o Ensure cost-benefit analysis

DEVELOPMENT CYCLE

5

▪ Phase 3: Prototyping

o Build a small prototype

o Test, improve, and expand it

o Analyze feasibility

o Complete the design

DEVELOPMENT CYCLE

6

▪ Phase 4: System Development

o Build the knowledge base

o Test, evaluate, and improve this base

o Plan for integration

DEVELOPMENT CYCLE

7

▪ Phase 5: Implementation

o Ensure user acceptance

o Install and deploy the system

o Guide and train users

o Ensure security

o Provide documentation

DEVELOPMENT CYCLE

8

▪ Phase 5: Post-Implementation

o Maintenance

o Updates

o Periodic evaluation

DEVELOPMENT CYCLE

9

DESIGN AND IMPLEMENTATION

▪ Conventional design (engine programming, etc…)

o Programming Languages (C, C#, Java, Python, ..)

▪ Use of ES generators (bare inference engine)

o M1, OPS5, MP-LRO

▪ Use of AI programming languages

o Functional languages: LISP, ML, CAML

o Logical languages: PROLOG

o Interpreters: CLIPS, JESS

o Graphical tools: ES Builder

10

PROLOG

Characteristics

Prolog is logical:
The program can be seen as a series of axioms that describe a problem.

Prolog uses a true notion of variables:
Variables refer to unknown objects in search. They are managed by the system,
which assigns them values and undoes them.

Prolog is non-deterministic:
Defined functions can have multiple values, and Prolog handles the search
for these values by backtracking where necessary.

11

Stucture of a program

Example :

%facts
personne(léon,35).
personne(lucie,27).
personne(louis,40).
personne(pauline,9).
personne(luc,27).

%rules
individu(x) :- personne(x,_).
majeur(x) :- personne(x,y),y=>18.
mineur(x) :- personne(x,y),y<18.

Implementation (queries)

?- individu(pauline).
→true

?- individu(jacque).
→ false

?- personne(X,27).
→ X=lucie;
→ X=luc.

?- personne(louis,X)
→ X=40.

?- mineur(X).
→ X=pauline.

PROLOG REASONING

A PROLOG program is composed of three parts: Facs, Rules and Queries (Goals)

12

Prolog Properties

Remarks:

▪ The mechanism of Prolog is correct:

o It only provides logically correct answers.

▪ The mechanism of Prolog is complete:

o When it stops, we can be sure that it has provided all the

necessary answers.

PROLOG REASONING

13

Meaning of rules in the Clauses section

Simple Clauses (Facts):
Example: Person(leon, 35).
Reads as: Leon is a person of 35 years.
Complete Clauses (rules): Contain the symbol :-
They correspond to general statements involving variables.
o The symbol ':-': Means If, can be replaced by if.
o The symbol ',': Means AND, can be replaced by and.
o The symbol ‘;': Means OR, can be replaced by or.
o The negation is represented by: not.
o Variables: Represent arbitrary objects.

Example: X, Y, Person.
o The symbol '_': Anonymous variable (means forall)

PROLOG REASONING

14

• Meaning:
- personne(léon,35). means:
It is true that Léon is a person of 35 years old OR
The goal Personne(Léon,35) is satisfied.

- individu(x):-personne(x,_). means:
X is an individual if it exists a fact personne(X,_). OR
The goal individu(x) is satisfied for each X so that Personne(x,_) is staisfied.

- mineur(x) :- personne(x,y),y<18. means:
X is a mineur if X is a personne of age Y and Y<18 OR
The goal Mineur(x) is satisfied for each X so that the goal Personne(X,Y) is satisfied with
Y<18.

Meaning of rules in the Clauses section

PROLOG REASONING

15

• Other precisions:
- The symbol ';’ can be used within the body of a rule, it means or:
a(x):-b(x);c(x). This rule could be written:

a(x):-b(x).

a(x):-c(x).

- The logical meaning of a clause is the meaninf of an implication between

the body of the rule and its head and where the variables are all universally

quantified.

Examples :
a(x):-b(x),c(x). means:  x b(x) ˄ c(x)  a(x)

a(x):-b. means: b   x a(x)

a(x):-b(x,y). means:  x ( y b(x,y))  a(x)

Meaning of rules in the Clauses section

PROLOG REASONING

16

Reasoning principle
1- Handle the leftmost goal.
2- To satisfy the goal being handled:

 + Search in the program order for the first rule not yet attempted at this point and
whose head is compatible with the goal
 + Then replace in the goal list the first goal with the body of this rule, making all
substitutions.

3- Whenever a failure occurs, backtrack to the most recent list of goals where a rule
could be used and has not been (backtracking).

Note: This systematic search type works very well with trees. Each node is a list of
goals, and the traversal is according to the technique:

Left - Right - Depth-first with Backtracking.

PROLOG REASONING

17

Example:

R1: Est-de-bonne-humeur(x):-A-de-l-argent(x),Est-en-vacances(x),Il-y-a-du-soleil.

R2: Est-de-bonne-humeur(x):-Réussit-dans-le-travail(x),Réussit-dans-sa-famille(x).

R3: A-de-l-argent(Jean).

R4: A-de-l-argent(Alain).

R5: Est-en-vacances(Jean):-On-est-en(Aout).

R6: Est-en-vacances(Alain):-On-est-en(Juillet).

R7: On-est-en(Juillet).

R8: Il-y-a-du-soleil:-On-est-en(Aout).

R9: Réussit-dans-le-travail(Jean).

R10: Réussit-dans-le-travail(Alain).

R11: Réussit-dans-sa-famille(Alain).
Goal: Est-de-bonne-humeur(x) ?

18

Est-de-bonne-humeur(x)

A-de-l-argent(x)
Est-en-vacances(x)

Il-y-a-du-soleil

Est-en-vacances(Jean)
Il-y-a-du-soleil

On-est-en(Aout)
Il-y-a-du-soleil

Failure

Est-en-vacances(Alain)
Il-y-a-du-soleil

On-est-en(Juillet).
Il-y-a-du-soleil

Il-y-a-du-soleil

On-est-en(Aout)

Réussit-dans-le-travail(x)
Réussit-dans-sa-famille(x)

Réussit-dans-sa-famille(Jean)

Réussit-dans-sa-famille(Alain)

X= Alain

Failure

Failure

Success

R1

R3

R5

R4

R6

R7

R8

R2

R9

R10

R11

19

Exercise :
Redo the reasoning by replacing
On-est-en(Juillet) by On-est-en(Aout)

20

Processing the negation

When encountering negations, Prolog reasons with the principle of Negation by Failure.

o If Prolog reasoning applied to goal P yields success, then the goal ¬P is

considered to result in failure.

o If Prolog reasoning applied to goal P yields failure, then the goal ¬P is considered

to result in success.

Whenever a goal of the form ¬P is encountered, it must be processed as follows:

o Build an auxiliary reasoning tree with P as its root.

o If this tree yields success, return to the main tree marking ¬P with a failure.

o If this tree yields failure, return to the main tree marking ¬P with success.

PROLOG REASONING

21

Negation by failure

¬P P

SuccessFailure

(1)(2)

¬P P
(1)(2)

PROLOG REASONING

FailureSuccess

22

Example 1:

R1: a:-b,not(c).
R2: a:-d(1).
R3: b.
R4: c:-d(2).
R5: c:-d(3).
R6: d(1).
R7: d(3).

Query: a ?

a

b,not(c)

not(c)

c

d(2) d(3)

SuccessFailure

Failure

d(1)

Success

R2

R6

R1

R3

R4 R5

R7

(1)

(2)

Negation by failure

PROLOG REASONING

23

Example 2:

R1: a:-b,not(c).
R2: a:-d(1).
R3: b.
R4: c:-d(2).
R5: c:-d(3).
R6: d(1).
R7: d(3).
R8: e:-d(1),not(a).
R9: e:-not d(2),d(3).

Query: e ?

Negation by failure

PROLOG REASONING

24

The CUT « ! »

▪ The cut "!" is a very special predicate; it always succeeds (true) and it

affects the way the reasoning tree is traversed.

▪ During the traversal of the reasoning tree, if a list of goals starting with a

cut "!" is encountered:

o It is necessary to backtrack directly above the goal that introduced

this cut.

o When the cut is encountered, it prunes all choices originating from the

goal that introduced the cut.

PROLOG REASONING

25

Example: A ?
A:-B,C.
A:-D.
A:-E.
B:-F,!.
B:-H.
B:-I.
E.
F:-G.
F:-J.
F:-K.
G.
G:-L.
G:-M.

A

B,C

F,!,C

G,!,C

!,C

C

Failure

D E

Failure Success

The CUT « ! »

PROLOG REASONING

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

