
APPROACH TO THE DEVELOPMENT OF EXPERT SYSTEMS

CHAPTER V
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▪ Phase 1: Project Initialization

o Problem Definition 

o Needs Analysis 

o Evaluation of Alternative Solutions 

o Verify if the ES approach is appropriate 

o Consider Management Issues

DEVELOPMENT CYCLE



4

▪ Phase 2: System Design and Analysis

o Define a conceptual design 

o Define a development strategy 

o Identify knowledge sources and ensure cooperation 

o Select computer resources 

o Ensure cost-benefit analysis

DEVELOPMENT CYCLE
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▪ Phase 3: Prototyping

o Build a small prototype 

o Test, improve, and expand it 

o Analyze feasibility 

o Complete the design

DEVELOPMENT CYCLE
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▪ Phase 4: System Development

o Build the knowledge base 

o Test, evaluate, and improve this base 

o Plan for integration

DEVELOPMENT CYCLE
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▪ Phase 5: Implementation

o Ensure user acceptance 

o Install and deploy the system 

o Guide and train users 

o Ensure security 

o Provide documentation

DEVELOPMENT CYCLE
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▪ Phase 5: Post-Implementation 

o Maintenance 

o Updates 

o Periodic evaluation

DEVELOPMENT CYCLE
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DESIGN AND IMPLEMENTATION

▪ Conventional design (engine programming, etc…)

o Programming Languages (C, C#, Java, Python, ..)

▪ Use of ES generators (bare inference engine)

o M1, OPS5, MP-LRO

▪ Use of AI programming languages

o Functional languages: LISP, ML, CAML

o Logical languages: PROLOG

o Interpreters: CLIPS, JESS

o Graphical tools: ES Builder
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PROLOG

Characteristics

Prolog is logical:
The program can be seen as a series of axioms that describe a problem.

Prolog uses a true notion of variables:
Variables refer to unknown objects in search. They are managed by the system, 
which assigns them values and undoes them.

Prolog is non-deterministic:
Defined functions can have multiple values, and Prolog handles the search 
for these values by backtracking where necessary.
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Stucture of a program

Example :

%facts
personne(léon,35).
personne(lucie,27).
personne(louis,40).
personne(pauline,9).
personne(luc,27).

%rules
individu(x) :- personne(x,_).
majeur(x) :- personne(x,y),y=>18.
mineur(x) :- personne(x,y),y<18.

Implementation (queries)

?- individu(pauline).
→true

?- individu(jacque).
→ false

?- personne(X,27).
→ X=lucie;
→ X=luc.

?- personne(louis,X)
→ X=40.

?- mineur(X).
→ X=pauline.

PROLOG REASONING

A PROLOG program is composed of three parts: Facs, Rules and Queries (Goals)
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Prolog Properties

Remarks: 

▪ The mechanism of Prolog is correct: 

o It only provides logically correct answers. 

▪ The mechanism of Prolog is complete: 

o When it stops, we can be sure that it has provided all the 

necessary answers.

PROLOG REASONING
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Meaning of rules in the Clauses section

Simple Clauses (Facts):
Example: Person(leon, 35). 
Reads as: Leon is a person of 35 years.
Complete Clauses (rules): Contain the symbol :-
They correspond to general statements involving variables. 
o The symbol ':-': Means If, can be replaced by if. 
o The symbol ',': Means AND, can be replaced by and. 
o The symbol ‘;': Means OR, can be replaced by or.
o The negation is represented by: not.
o Variables: Represent arbitrary objects. 

Example: X, Y, Person. 
o The symbol '_': Anonymous variable (means forall)

PROLOG REASONING
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• Meaning:
- personne(léon,35). means:
It is true that Léon is a person of 35 years old OR
The goal Personne(Léon,35) is satisfied.

- individu(x):-personne(x,_). means:
X is an individual if it exists a fact personne(X,_). OR
The goal individu(x) is satisfied for each X so that Personne(x,_) is staisfied.

- mineur(x) :- personne(x,y),y<18. means: 
X is a mineur if X is a personne of age Y and Y<18 OR
The goal Mineur(x) is satisfied for each X so that the goal Personne(X,Y) is satisfied with 
Y<18.

Meaning of rules in the Clauses section

PROLOG REASONING
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• Other precisions:
- The symbol ';’ can be used within the body of a rule, it means or:
a(x):-b(x);c(x). This rule could be written:

a(x):-b(x).

a(x):-c(x).

- The logical meaning of a clause is the meaninf of an implication between 

the body of the rule and its head and where the variables are all universally 

quantified.

Examples : 
a(x):-b(x),c(x). means:  x b(x) ˄ c(x)  a(x)

a(x):-b. means: b   x a(x)

a(x):-b(x,y). means:  x ( y b(x,y))  a(x)

Meaning of rules in the Clauses section

PROLOG REASONING
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Reasoning principle
1- Handle the leftmost goal.
2- To satisfy the goal being handled:

     + Search in the program order for the first rule not yet attempted at this point and 
whose head is compatible with the goal
     + Then replace in the goal list the first goal with the body of this rule, making all 
substitutions.

3- Whenever a failure occurs, backtrack to the most recent list of goals where a rule 
could be used and has not been (backtracking). 

Note: This systematic search type works very well with trees. Each node is a list of 
goals, and the traversal is according to the technique: 

Left - Right - Depth-first with Backtracking.

PROLOG REASONING
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Example:

R1: Est-de-bonne-humeur(x):-A-de-l-argent(x),Est-en-vacances(x),Il-y-a-du-soleil.

R2: Est-de-bonne-humeur(x):-Réussit-dans-le-travail(x),Réussit-dans-sa-famille(x).

R3: A-de-l-argent(Jean).

R4: A-de-l-argent(Alain).

R5: Est-en-vacances(Jean):-On-est-en(Aout).

R6: Est-en-vacances(Alain):-On-est-en(Juillet).

R7: On-est-en(Juillet).

R8: Il-y-a-du-soleil:-On-est-en(Aout).

R9: Réussit-dans-le-travail(Jean).

R10: Réussit-dans-le-travail(Alain).

R11: Réussit-dans-sa-famille(Alain).
Goal: Est-de-bonne-humeur(x) ?
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Est-de-bonne-humeur(x)

A-de-l-argent(x)
Est-en-vacances(x)

Il-y-a-du-soleil

Est-en-vacances(Jean)
Il-y-a-du-soleil

On-est-en(Aout)
Il-y-a-du-soleil

Failure

Est-en-vacances(Alain)
Il-y-a-du-soleil

On-est-en(Juillet).
Il-y-a-du-soleil

Il-y-a-du-soleil

On-est-en(Aout)

Réussit-dans-le-travail(x)
Réussit-dans-sa-famille(x)

Réussit-dans-sa-famille(Jean)

Réussit-dans-sa-famille(Alain)

X= Alain

Failure

Failure

Success

R1

R3

R5

R4

R6

R7

R8

R2

R9

R10

R11
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Exercise : 
Redo the reasoning by replacing
On-est-en(Juillet) by On-est-en(Aout)
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Processing the negation

When encountering negations, Prolog reasons with the principle of Negation by Failure. 

o If Prolog reasoning applied to goal P yields success, then the goal ¬P is 

considered to result in failure. 

o If Prolog reasoning applied to goal P yields failure, then the goal ¬P is considered 

to result in success. 

Whenever a goal of the form ¬P is encountered, it must be processed as follows:

o Build an auxiliary reasoning tree with P as its root.

o If this tree yields success, return to the main tree marking ¬P with a failure.

o If this tree yields failure, return to the main tree marking ¬P with success.

PROLOG REASONING
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Negation by failure

¬P P

SuccessFailure

(1)(2)

¬P P
(1)(2)

PROLOG REASONING

FailureSuccess
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Example 1:

R1: a:-b,not(c).
R2: a:-d(1).
R3: b.
R4: c:-d(2).
R5: c:-d(3).
R6: d(1).
R7: d(3).

Query: a ?

a

b,not(c)

not(c)

c

d(2) d(3)

SuccessFailure

Failure

d(1)

Success

R2

R6

R1

R3

R4 R5

R7

(1)

(2)

Negation by failure

PROLOG REASONING
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Example 2:

R1: a:-b,not(c).
R2: a:-d(1).
R3: b.
R4: c:-d(2).
R5: c:-d(3).
R6: d(1).
R7: d(3).
R8: e:-d(1),not(a).
R9: e:-not d(2),d(3).

Query: e ?

Negation by failure

PROLOG REASONING
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The CUT « ! »

▪ The cut "!" is a very special predicate; it always succeeds (true) and it 

affects the way the reasoning tree is traversed.

▪ During the traversal of the reasoning tree, if a list of goals starting with a 

cut "!" is encountered:

o It is necessary to backtrack directly above the goal that introduced 

this cut.

o When the cut is encountered, it prunes all choices originating from the 

goal that introduced the cut.

PROLOG REASONING
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Example: A ?
A:-B,C.
A:-D.
A:-E.
B:-F,!.
B:-H.
B:-I.
E.
F:-G.
F:-J.
F:-K.
G.
G:-L.
G:-M.

A

B,C

F,!,C

G,!,C

!,C

C

Failure

D E

Failure Success

The CUT « ! »

PROLOG REASONING
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