

Ministry of Higher Education and Scientific Research Djilali BOUNAAMA University - Khemis Miliana(UDBKM) Faculty of Science and Technology Department of Mathematics and Computer Science

Chapter 1

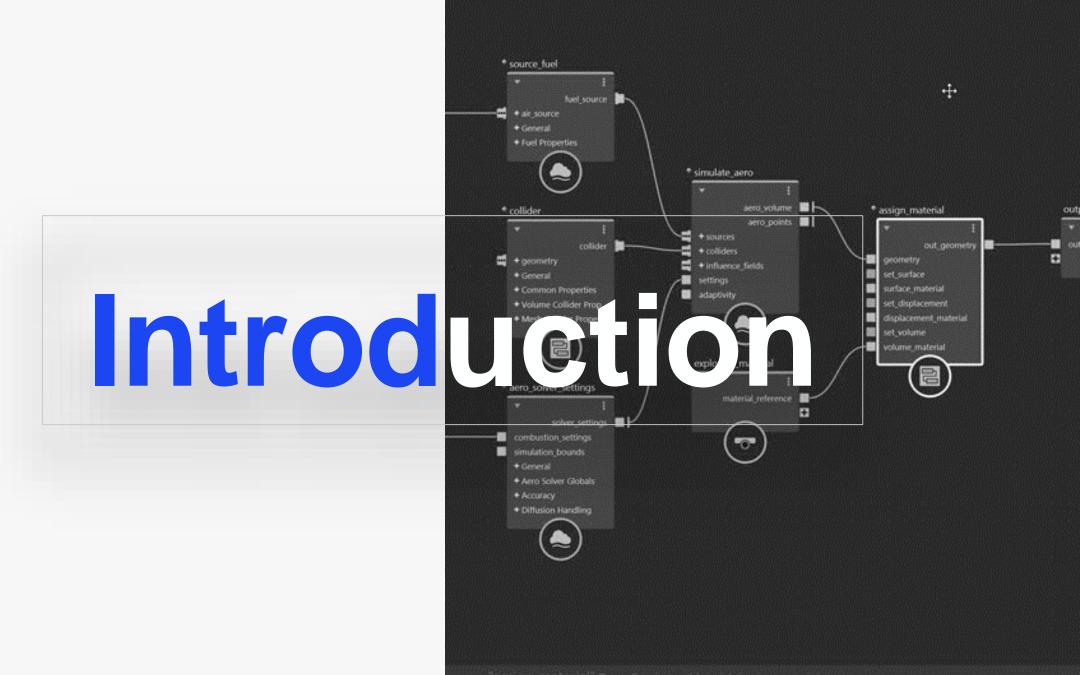
Introduction & Basics

AIBD-M1-UEF22: Advanced Databases

Noureddine AZZOUZA

n.azzouza@univ-dbkm.dz

Course Topics


1. Introduction

2. Definitions & Basics

3. Data Model

4. SQL

5. References

Curriculum

1- Semestre 1:

Unité d'Enseignement

UE fondamentales

UEF11(O/P)

Algorithmique Avancée et Complexité

Optimisation Combinatoire

UEF12(O/P)

Apprentissage Automatique

Intelligence Artificielle : Principes et Applications

UE méthodologie

UEM11(O/P)

Analyse de Données

Introduction aux Sciences de Données

UE découverte

UED11(O/P)

Cybersécurité

UE transversales

UET11(O/P)

Anglais Scientifique

Total Semestre 1

2- Semestre 2:

Unité d'Enseignement

UE fondamentales

UEF21(O/P)

Apprentissage Profond

Méta-heuristiques et Algorithmes évolutionnaires

UEF22(O/P)

Bases de Données Avancées

Data Mining

UE méthodologie

UEM21(O/P)

Ingénierie du logiciel

Business Intelligence et Visualisation de données

UE découverte

UED21(O/P)

Internet des Objets

UE transversales

UET21(O/P)

Méthodologie de la Recherche Scientifique

Total Semestre 2

3- Semestre 3:

Unité d'Enseignement

UE fondamentales

UEF31(O/P)

Apprentissage Profond Avancé

Big Data et Cloud Computing

Technologies des Agents

UE méthodologie

UEM31(O/P)

Vision par Ordinateur et Traitement d'Image

Traitement Automatique du Langage Naturel

Web Sémantique et Données Liées

UE découverte

UED31(O/P)

Introduction à la robotique

UE transversales

UET31(O/P)

Entrepreneuriat et Startup dans le Numérique

Total Semestre 3

ddine AZZOUZA

Objectives

- ✓ Present the architecture and internal functioning of current DBMS
- ✓ Introduce modern techniques, methods and results of field of DB.
- ✓ New data management techniques are also covered such as: Object-Relational BDs, NoSQL and Cloud databases.

Recommended prior knowledge

- ✓ Databases
- ✓ Advanced Algorithmics and Complexity (Trees)

Content of this course

1. Chapter 1. Introduction

- Relational DBMS
- SQL language

2. Chapter 2. Data Storage and Index Structures

- Storage media (Structures, RAID, Cache, etc.)
- Indexes (Structures, types: B B+ Bitmap, management)

3. Chapter 3: Query Optimization

- Basic operations (joins...)
- Interpretation of queries
- Query optimization (Query tree, Rule-based, Cost-based)

Content of this course

4. Chapter 4: transaction management and concurrency

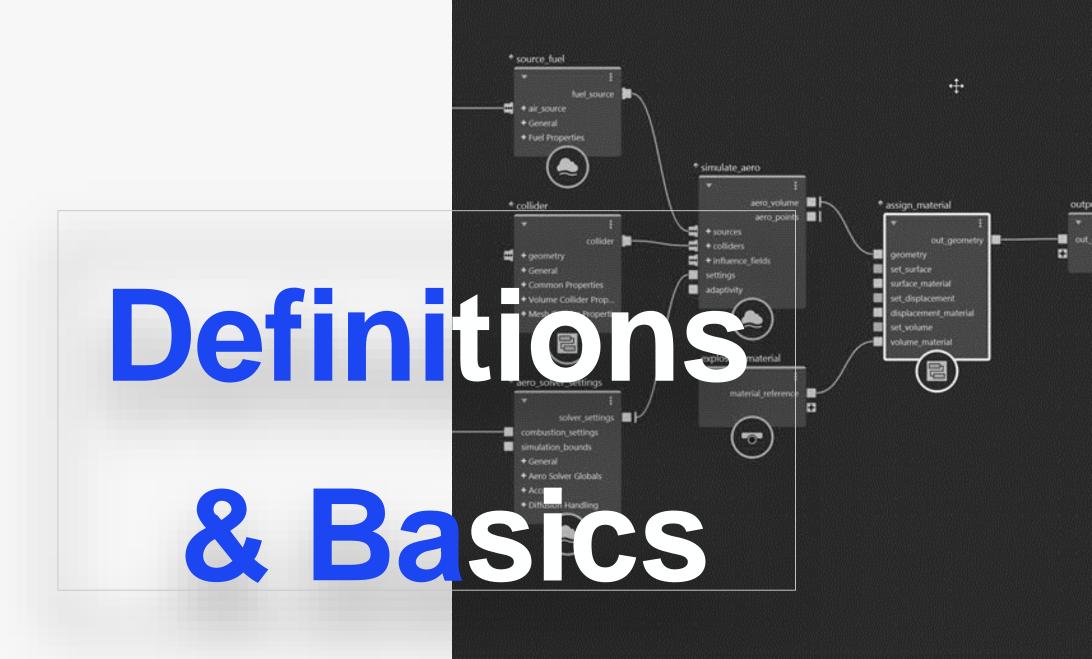
- Transaction
- Serializability
- Concurrency management (Two-phase locking, Stamping)

5. Chapter 5: Object-Relational Databases

- Presentation of the Object model
- Presentation of the Object-Relational model

6. Chapter 6: NoSQL Databases

- Big Data (No SQL...)
- Main NoSQL DB models (Key-Value, column, graph)



Content of this course

7. Chapter 7: Cloud Databases

- BDD as Service (advantages, types, etc.)
- Operation (handling, migration, etc.)

Database

- ✓ Collection of consistent and structured data (persistent data) used by computer systems.
- ✓ Collection of highly structured and persistent data whose structure is defined in a schema using a data definition language.
- ✓ The data and schema are managed using software called a
 database management system (DBMS).

database management system (DBMS)

- ✓ A set of computer software used to manipulate databases.
- ✓ It is used to perform ordinary operations such as consulting, modifying, constructing, organizing, transforming, copying, saving or restoring databases.
- ✓ It is often used by other software as well as administrators or developers.

Objectives of DBMS

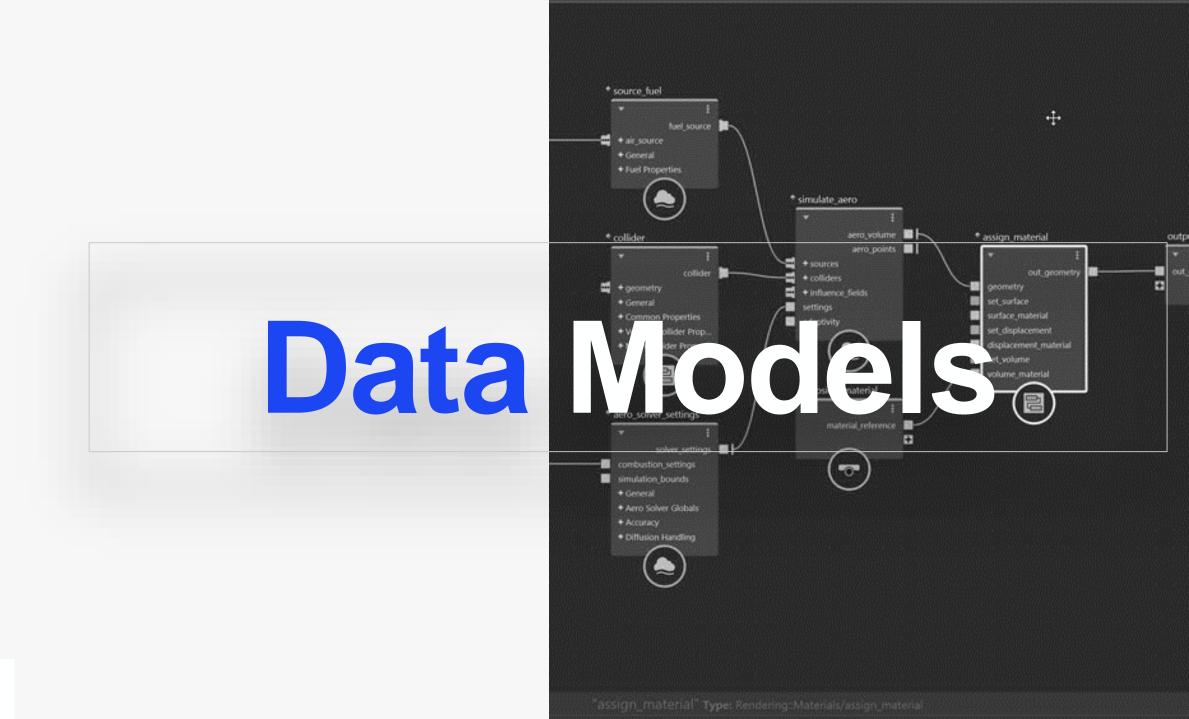
- √ Physical Independence
 - ☐ Concept of relationship which defines the data structure
 - ☐ The structure for implementing a relationship is the table on which access paths (indexes) will be defined.
- √ Logical independence
 - ☐ The DBMS must authorize several user views on the base
 - ☐ Possible thanks to the concept of views

Objectives of DBMS

- ✓ Evolution of the DB
 - ☐ Evolution of data: Insertion, Deletion, Modification
 - ☐ Evolution of the schema: Addition, deletion of attributes, Addition of a new relation.
- ✓ Data consistency
 - Data integrity
 - ☐ Data in a database must satisfy invariants called integrity constraints.

Administrator

- √ install the DBMS
 - ☐ server, clients, application tools
- ✓ create the database and develop it
 - ☐ define the logical and physical storage organizations
 - ☐ define the data storage resources
- √ register and manage users
 - ☐ create roles, user profiles
 - ☐ assign appropriate roles to users



Administrator

- ✓ ensure data security and consistency
 - ☐ define backup strategies (backup, restoration, archiving)
 - manage access to data
- √ maintain good performance (or improve it)

- √ allow the exchange of Base <-> Exterior data
 - ☐ Export/import, SQLloader

1. Conceptual stage:

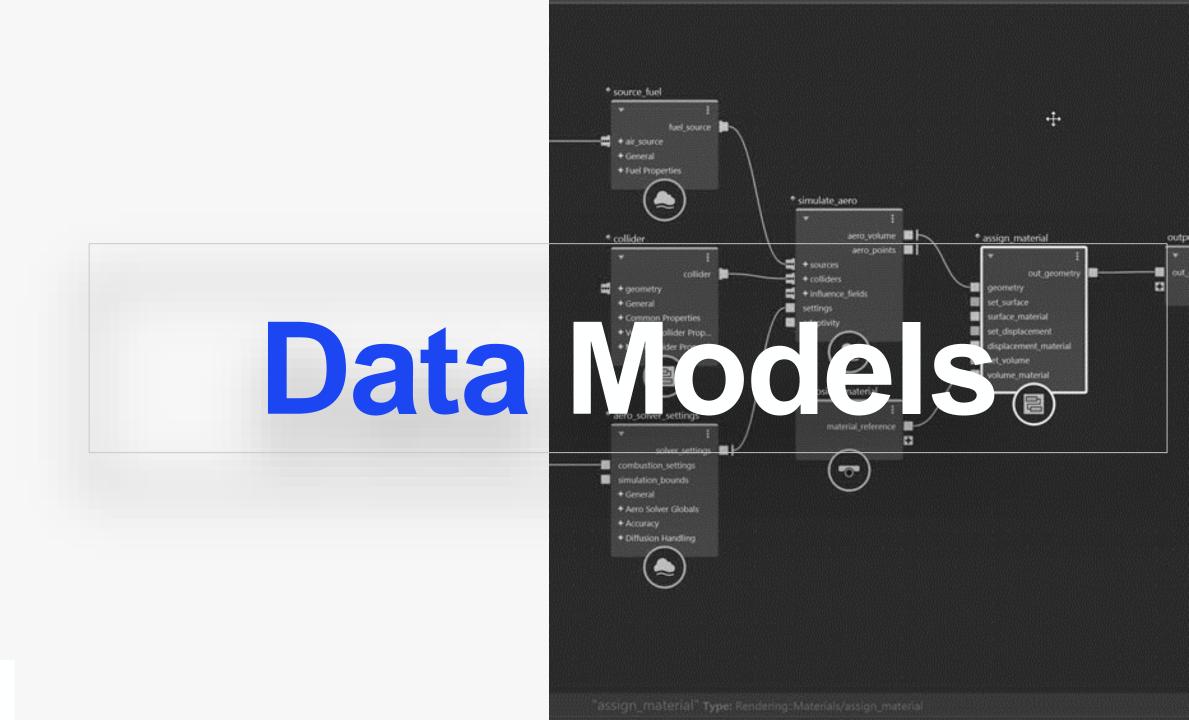
- ☐ Design and Modeling of databases
- ☐ Use of
 - Methods, Models, Formalisms
 - > Entity-Association Model E/R / Model Extended Entity-Association
 - Object Models, UML Formalism
- ☐ Tools:
 - Power AMC,
 - Power Designer
 - WinDev,
 - Oracle Designer Rationals Rose

3. Physical stage:

- ☐ Relational DBMS / Object-Relational DBMS / Object-Oriented DBMS
- ☐ Languages (SQL, PL/SQL, PRO*C, JDBC, Java, ...)
- ☐ Optimizations (Grouping, Indexes, ...)
- Administration
- ☐ Tools
 - > Oracle, DB2, My SQL 4

4. Software

DBMS, Interfaces & Hardware



2. Logical stage:

- ☐ Implementation of a database Relational Model / Mod Object-Relational Model / Object Model
- ☐ Optimization of the schema (Normalization, Denormalization, etc.)

ASD I



1. Conceptual stage:

- ☐ Design and Modeling of databases
- ☐ Use of
 - Methods, Models, Formalisms
 - > Entity-Association Model E/R / Model Extended Entity-Association
 - Object Models, UML Formalism
- ☐ Tools:
 - Power AMC,
 - Power Designer
 - WinDev,
 - Oracle Designer Rationals Rose

References

Ministry of Higher Education and Scientific Research Djilali BOUNAAMA University - Khemis Miliana(UDBKM) Faculty of Science and Technology Department of Mathematics and Computer Science

Chapter 1

Introduction & Basics

AIBD-M1-UEF22: Advanced Databases

Noureddine AZZOUZA

n.azzouza@univ-dbkm.dz