
Chapter 3:

Procedures

 introduction

 Procedures are a fundamental concept in programming that allow you to organize

and structure your code into reusable blocks of instructions. They provide a way to

encapsulate a sequence of operations or calculations that can be called and executed

multiple times from different parts of a program. Procedures help improve code readability,

promote code reuse, and make programs more modular and maintainable

In programming, the program structure consists of the following components:

1. Main Program:

The main program is the entry point of the program. It is where the execution begins

and controls the overall flow of the program. The main program typically contains

variable declarations, function/subroutine calls, and the main logic of the program.

2. Functions and Subroutines:

Functions and subroutines are blocks of code that perform specific tasks and can be

called from within the main program or other functions/subroutines. Functions are

procedures that return a value, while subroutines are procedures that do not return a

value. They encapsulate a set of instructions and can be reused at different parts of the

program. Functions and subroutines help modularize the code and make it more

organized and maintainable.

3. Data Blocks: Data blocks, also known as data sections or data areas, are used to

declare and define variables that are used in the program. These variables can have

global scope, meaning they can be accessed by multiple functions/subroutines within

the program. Data blocks provide a centralized location to declare and manage data,

making it easier to share information between different parts of the program.

4. Modules:

Modules are programming units that encapsulate related functions, subroutines, and

data blocks. They provide a way to organize and structure the code by grouping

related components together. Modules promote code reusability, modularity, and

encapsulation. They can be used to create libraries or reusable components that can be

easily included in different programs

 Functions:

Functions are standalone code blocks that perform a specific calculation and return a

value as output. They are commonly used for computations and operations on data. Functions

can take input arguments, perform operations on those arguments, and return a value as

output. Generally, functions are used to perform calculations and return the result to where

they are called in the program.

Here's the general syntax of a function:

FUNCTION function_name(arg1, arg2, ...)

 ! Local declarations

 ! Instructions

 function_name = return_value

END FUNCTION

 Subroutines:

Subroutines are standalone code blocks that perform a sequence of specific

instructions. They are commonly used for repetitive tasks or data manipulation operations.

Subroutines can take input arguments, perform operations on those arguments, and do not

return a value as output. They are often used to perform actions without returning a specific

result to where they are called in the program.

Here's the general syntax of a subroutine:

SUBROUTINE subroutine_name(arg1, arg2, ...)

 ! Local declarations

 ! Instructions

END SUBROUTINE

 Data Blocks:

Data blocks, also known as COMMON blocks, are used to group variables with

global scope in a program. They allow sharing variables among different parts of the source

code. Data blocks are typically placed at the beginning of the program, before variable

declarations.

Here's an example syntax for defining a data block:

DATA [type] /block_name/ variable1, variable2, ..

 Modules:

Modules are program units that group related functions, subroutines, and data blocks.

They help organize and modularize the source code by grouping similar functionalities.

Modules can be used to create reusable function libraries or to organize a program into

multiple distinct parts.

Here's an example syntax for defining a module:

MODULE module_name

! Variable declarations

! Definition of functions and subroutines

CONTAINS

! Definition of additional functions and subroutines

END MODULE

 Advantages of Procedures:
Functions and subroutines offer several advantages in programming:

 Reusability: Functions and subroutines can be called at multiple places in a program,

allowing code reuse and avoiding duplication.

 Modularity: Modules help organize source code into separate units, facilitating

program maintenance and understanding.

 Readability: Using functions and subroutines helps divide a complex program into

smaller, more manageable parts, making the code more readable and easier to

understand.

 Encapsulation: Functions and subroutines allow encapsulating specific functionalities,

making code management and modification easier.

`These basic concepts of functions, subroutines, data blocks, and modules are commonly

used in programming. They allow you to organize and structure your code effectively,

promoting reusability, modularity, and readability.

 Program 1: Factorial Calculation Using a Function

PROGRAM Factorial

IMPLICIT NONE

INTEGER :: num, result

INTEGER FUNCTION factorial(n)

INTEGER :: n

IF (n == 0 .OR. n == 1) THEN

factorial = 1

ELSE

factorial = n * factorial(n - 1)

END IF

END FUNCTION factorial

WRITE(*,*) "Enter a number: "

READ(*,*) num

result = factorial(num)

WRITE(*,*) "Factorial of ", num, " is ", result

END PROGRAM Factorial

 In this Fortran program, we define a function called factorial that takes an

integer n as an argument and calculates the factorial of n. The function uses recursion to

calculate the factorial by multiplying n with the factorial of n-1 until n reaches 0 or 1. The

main program prompts the user to enter a number, calls the factorial function with the input

number, and prints the factorial result.

