
Chapter: 2

File Opening and Creation

 Introduction :

The "Open File" chapter in Fortran covers a crucial aspect of programming, which is

opening and manipulating files. In this chapter, we explore how to open files in the Fortran

programming language, which is commonly used for scientific and numerical computations.

Opening a file allows a Fortran program to access the data stored in that file, whether it is for

reading or writing. The "Open File" chapter introduces the syntax of the "open" statement in

Fortran, which is used to open a file and associate it with a file variable in the program.

Throughout the chapter, you will learn about the different parameters used when opening a

file in Fortran. This includes the file unit number, which is used to identify the file in the

program, as well as options such as the file status (new, existing), the action to be taken on the

file (read, write), and the file access mode (sequential, direct).

The chapter also provides concrete examples to illustrate how to open a file in Fortran

and how to use the different available options. You will learn how to specify the file name,

handle file opening errors, and perform read and write operations on opened files.

In summary, the "Open File" chapter in Fortran is a valuable resource for programmers

looking to master file manipulation in this language. It provides a clear introduction to the

syntax and options for opening files in Fortran, allowing you to fully leverage the file

manipulation capabilities of this powerful programming language.

 Using a file within a program requires opening it. In Fortran, the open instruction is

used.

Exemples :

- Open (10, file='result.dat') ! Compact form

- Open (10, file='result.dat',status='old') ! Form with option

 Syntaxe OPEN

The OPEN syntax in Fortran is used to open files and associate them with file variables to

enable reading and writing data to those files.

OPEN(unit = unit_number, file = file_name, status = file_status, action = file_action,

access = file_access, iostat = error_code)

---!

Close(unit = unit_number)

In this syntax:

 unit_number: is the unit number used to identify the file within the program.

 file_name\: is the name of the file to be opened.

 file_status: specifies the status of the file, such as "OLD", "NEW", or "REPLACE".

 file_action : specifies the action to be taken on the file, such as "READ", "WRITE",

or "READWRITE".

 file_access : specifies the access mode for the file, such as "SEQUENTIAL" or

"DIRECT".

 error_code: is an optional variable that stores the error code generated during the file

 Example: To calculate the sum of two matrices A and B and store the results in a file

on the desktop, for example

PROGRAM sum

IMPLICIT NONE

INTEGER :: i, j

REAL :: A(3,3), B(3,3), C(3,3)

INTEGER :: lun

lun = 20

OPEN(unit=lun, file="resultats.TXT", status="REPLACE")

A = reshape((/1., 2., 3., 4., 5., 6., 7., 8., 9./), (/3, 3/))

B = reshape((/9., 8., 7., 6., 5., 4., 3., 2., 1./), (/3, 3/))

C = A + B

WRITE(lun,*) 'Matrice A :'

DO i = 1, 3

WRITE(lun, '(3(F5.1, 1X))') A(i, :)

END DO

WRITE(lun,*) 'Matrice B :'

DO i = 1, 3

WRITE(lun, '(3(F5.1, 1X))') B(i, :)

END DO

WRITE(lun,*) 'Somme C :'

DO i = 1, 3

WRITE(lun, '(3(F5.1, 1X))') C(i, :)

END DO

CLOSE(lun)

END

 The simplified syntax for the "open" statement in Fortran, along with the

corresponding "close" statement:

OPEN(unit_number, file=file_name, status=file_status)

! Perform file operations...

CLOSE(unit_number)

Explanation of the parameters:

 unit_number: The unit number that identifies the file within the program.

 file=file_name: The name of the file to be opened.

 status=file_status: The status of the file, such as "OLD," "NEW," or "REPLACE."

After performing the necessary file operations, you can close the file using the "close"

statement. The "close" statement is used to indicate the end of file operations for a specific

file unit.

Make sure to replace unit_number, file_name, and file_status with the appropriate values

based on your requirements.

There are options for the "status" parameter in the "open" command, such as 'new' to

create a new file (and generate an error if the file already exists), 'old' to open an existing file

(and generate an error if the file does not exist), 'scratch' to create a temporary file, etc.

• The "open" command with the status='replace' parameter, and you name your file

data.txt. If you run the program multiple times, each time you open the data.txt file, the

previous content of the file will be erased and replaced with the new content generated by

your program.

• This can be useful if you want to save the results of your program in a file and do not

need to keep the old data in the file. If you instead want to add data to an existing file, you

can use the status='append' parameter in the open command. This way, the new data will

be added to the end of the file without erasing the previous content.

Here's a brief explanation of the other options for the status parameter in the open

command:

• 'new': Used to create a new file. If the file already exists, an error will be generated.

• 'old': Used to open an existing file. If the file does not exist, an error will be generated.

• 'replace': Used to open a file in replacement mode. If a file with the same name already

exists, it will be replaced by the newly created file. If the file does not exist, it will be

created.

• 'append': Used to add data to the end of an existing file. If the file does not exist, it will

be created.

• 'scratch': Used to create a temporary file that will be automatically deleted at the end of

the program.

• 'unknown': Used to open a file whose name is unknown at compilation. This option is

typically used for dynamic file input/output, such as files generated by another program.

