
Chapter 4

Functions of several variables

”Nature does nothing in vain, and more is in vain when less will serve; for Nature is
pleased for simplicity, and affects not the pomp of superfluous causes”.——Sir Isaac Newton
(1642–1727), Principia.

Functions of several variables are needed to describe complex processes. For example
the temperature changes during the day needs four variables : three coordinates of place
and one coordinate of the time. The mathematical description of complex systems e.g.
the motion of gas or fluids, may need millions variables.

Definition 4.0.1 Rn denotes the set of ordered n-tuples of real numbers, that is

Rn = {(x1, x2, x3, . . . , xn) : x1, x2, . . . , xn ∈ R} .

The points of Rn are sometimes called n-dimensional vectors.

x ∈ Rn ⇔ x = (x1, x2, . . . , xn) = x1(1, 0, . . . , 0) + x2(0, 1, 0, . . . , 0) + . . .+ xn(0, 0, . . . , 1).

We observe that

x = (x1, x2, . . . , xn) = x1(1, 0, . . . , 0)+x2(0, 1, 0, . . . , 0)+. . .+xn(0, 0, . . . , 1) = x1e1+x2e2+. . .+xnen,

where
e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1).

Example 4.0.1 Note that when n = 1, we get the real line

R = {x1 : x1 ∈ R}.

When n = 2, we get the plane

R2 = {(x1, x2) : x1, x2 ∈ R}.

Note that if x ∈ R2, then

x = (x1, x2) = x1(1, 0) + x2(0, 1) = x1i+ x2j,
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where i = (1, 0) and j = (0, 1).
When n = 3, we get the 3-dimensional space

R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R}.

x ∈ R3 ⇐⇒ x = x1
−→
i + x2

−→
j + x3

−→
k ,

−→
i = (1, 0, 0),

−→
j = (0, 1, 0),

−→
k = (0, 0, 1).

The 4-dimensional space

R4 = {(x1, x2, x3, x4) : x1, x2, x3, x4 ∈ R},

has many important applications in physics. For example we can describe a position of
a point by 3 coordinates and the fourth coordinate as time.

We know that the sum of vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is the
vector

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn),

and the product of a vector x = (x1, x2, . . . , xn) and a real number c is the vector

cx = (cx1, cx2, . . . , cxn).

4.1 Inner product (scalar product) (dot product)

Definition 4.1.1 Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors. We
define the inner product of x and y as

〈x, y〉 = x.y =
n∑
i=1

xiyi = x1y1 + x2y2 + . . .+ xnyn.

Note that, when x = y we get

〈x, x〉 = x21 + x22 + . . .+ x2n.

Example 4.1.1 The inner product of x = (1, 3,−2) and y = (0, 1, 2) is

〈x, y〉 = 1× 0 + 3× 1 + 2×−2 = −1.

From the definition of the inner product, it is easy to see that

1. 〈x, y〉 = 〈y, x〉 for any x, y ∈ Rn.

2. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 for any x, y, z ∈ Rn.

3. If λ ∈ R, then
〈λx, y〉 = λ〈x, y〉, ∀x, y ∈ Rn.
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4. If x = (0, 0, . . . , 0), then
〈x, y〉 = 0, ∀y ∈ Rn.

Definition 4.1.2 We say that two vectors x and y are orthogonal, if

〈x, y〉 = 0.

Example 4.1.2 The vectors x = (1, 0, 0) and y = (0, 1, 0) are orthogonal, since

〈x, y〉 = 1× 0 + 1× 0 + 0× 0 = 0.

Definition 4.1.3 The distance between the vector x = (x1, x2, . . . , xn) the origin 0Rn =
(0, 0, . . . , 0) is

||x|| =
√
x21 + x22 + . . .+ x2n =

√
〈x, x〉.

The distance between two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is

||x− y|| =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2 =
√
〈x− y, x− y〉.

Example 4.1.3 Find the distance between the vectors x = (1, 2, 3) and y = (0, 2, 1). By
definition we have

||x− y|| =
√

12 + 02 + 22 =
√

5.

Proposition 4.1.4 The inner product of two vectors x and y is

〈x, y〉 = ||x||||y|| cos(θ), θ ∈ [0, π].

θ is the angle between the vectors x and y.

Proof. Apply the law of cosines gives

||x− y||2 = ||x||2 + ||y||2 − 2||x||||y|| cos(θ) (4.1)

Using the properties of the inner product, we have

||x− y||2 = ||x||2 + ||y||2 − 2〈x, y〉.

Substituting this into (4.1) yields

〈x, y〉 = ||x||||y|| cos(θ).

Example 4.1.5 Find the angle between x = (2, 1, 0) and y = (−2, 2, 1). Note that
||x|| =

√
5, ||y|| = 3, and 〈x, y〉 = −2. Hence, we get

cos θ =
−2

3
√

5
⇒ θ = arccos

(
−2

3
√

5

)
.
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4.2 The cross product

Definition 4.2.1 Let x = (x1, x2, x3) and y = (y1, y2, y3). Then, the cross product x×y
is

x× y = det

 i j k
x1 x2 x3
y1 y2 y3.

 = (x2y3 − x3y2)i+ (x3y1 − x1y3)j + (x1y2 − x2y1)k.

Example 4.2.1 Let x = (−1, 2, 5) and y = (4, 0, 3). Find x× y.

4.3 Functions of two variables

Definition 4.3.1 Let D be a subset of R2 (D ⊆ R2). A function of two variables
f : D ⊆ R2 → R maps each ordered pair (x, y) ∈ D to a unique real number z, that is

D 3 (x, y) 7→ f(x, y) = z.

• The set D is called the domain of the function f .

• The ragne of f is
R(f) = {f(x, y) : (x, y) ∈ D} ⊆ R.

Example 4.3.1 Find the domain and the range of each of the following functions

1. f(x, y) = 3x+ 5y + 1

2. f(x, y) =
√

9− x2 − y2.

Solution. We see that for any (x, y) ∈ R2 the function f(x, y) = 3x+ 5y+ 1 is defined.
To determine the range, we pick z ∈ R and find a solution for the equation

f(x, y) = z ⇐⇒ 3x+ 5y + 1 = z.

It is easy to see that ((z − 1)/3, 0) gives a solution to this equation. Hence, R(f) = R.
The second function is defined when 9− x2 − y2 ≥ 0, that is

D =
{

(x, y) ∈ R2 : x2 + y2 ≤ 9
}
.

The graph of this set of points can be described by as disk of radius 3 centred at the
origin. To find the range we observe that

0 ≤ z = f(x, y) ≤ 3⇒ R(f) ⊂ [0, 3].

On the other hand, for any z ∈ [0, 3], there exists a solution (x, y) for the equation

9− z2 = x2 + y2.

Therefore, R(f) = [0, 3].
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4.4 Graphing functions of two variables

We know that the graph of the function y = f(x) is a curve in R2 given by

graph f = {(x, y) : x ∈ [a, b] y = f(x)}.

The graph of a function of two variables z = f(x, y) is a surface in R3 given by

graph f = {(x, y, z) : (x, y) ∈ D, z = f(x, y)}.

Example 4.4.1 Create a graph of each of the following functions :

f(x, y) =
√

9− x2 − y2 and f(x, y) = x2 + y2.

4.5 Functions of more than two variables

Similarly, we define functions of more than two variables as f : D ⊆ Rn → R.

Example 4.5.1 As examples of more than two variables, we give

g(x, y, z) = x2 + y2 + z2,

and
g(x, y, z, t) =

√
x2 + y2 + z2 + t2.

Example 4.5.2 Find the domain of definition of each of the following functions :

1. f(x, y, z) = 3x−4y+2z√
9−x2−y2−z2

.

2. g(x, y, t) =
√
2t−4

x2−y2 .

4.6 Limits and Continuity

Definition 4.6.1 Let f be a function of two variables x and y.

lim
(x,y)→(a,b)

f(x, y) = L⇔ ∀ε > 0, ∃δ > 0 s.t 0 < ||(x−a, y−b)|| < δ =⇒ |f(x, y)−L| < ε.

Example 4.6.1 Use the definition of the limit to show that

lim
(x,y)→(0,0)

x2 + y2 = 0.

For any ε > 0 can we find δ > 0 such that if ||(x, y)|| < δ, then

|f(x, y)| < ε.

We have
|f(x, y)| = x2 + y2 = ||(x, y)||2 < δ2.

Thus, taking δ =
√
ε yields the result.
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4.6.1 Limits law for functions of two variables

Let f(x, y) and g(x, y) be defined for all (x, y) 6= (a, b). Assume that L and M are real
numbers, and let c be a constant. Then each of the following statements :

1. Constant law

lim
(x,y)→(a,b)

c = c.

2. Identity law

lim
(x,y)→(a,b)

x = a.

lim
(x,y)→(a,b)

y = a.

3. Sum law

lim
(x,y)→(a,b)

(f(x, y)± g(x, y)) = L±M.

4. Product law

lim
(x,y)→(a,b)

(f(x, y)g(x, y)) = LM.

5. Quotient law

lim
(x,y)→(a,b)

f(x, y)

g(x, y)
=

L

M
, M 6= 0.

6. Power law

lim
(x,y)→(a,b)

(f(x, y))n = Ln.

7. Root law

lim
(x,y)→(a,b)

n
√
f(x, y) =

n
√
L,

for L ∈ R if n is odd positive, and for all L ≥ 0 if n is even and positive.

Example 4.6.2 Find each of the following limits :

1. lim(x,y)→(2,−1) (x2 − 2xy + 3y2 − 4x+ 3y − 6) .

2. lim(x,y)→(2,−1)
2x+3y
4x−3y .
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4.6.2 Limits fail to exist

Definition 4.6.2 We say lim(x,y)→(a,b) f(x, y) does not exist, if the function f(x, y) takes
two differents limits along different curves passing through (a, b).

Example 4.6.3 Show that neither of the following limits exist :

1. lim(x,y)→(0,0)
2xy

3x2+y2
.

2. lim(x,y)→(0,0)
4xy2

x2+3y4
.

Solution. For the first example we see that f(x, 0) = 0 and f(x, x) = 1/2. Thus,
lim(x,y)→(0,0)

2xy
3x2+y2

does not exist. For the second, we observe that f(x, 0) = 0 6=
f(y2, y) = 1. Hence, lim(x,y)→(0,0)

4xy2

x2+3y4
does not exist.

4.7 Continuity of functions of two variables

Definition 4.7.1 Let f(x, y) be a function of two variables defined on D. We say that
f is continuous at (a, b) ∈ D if

1. f(a, b) exists

2. lim(x,y)→(a,b) f(x, y) exists

3. lim(x,y)→(a,b) f(x, y) = f(a, b).

Example 4.7.1 Let f(x, y) = xy
(x2+y2)α

if (x, y) 6= (0, 0), and f(0, 0) = 0. For what values
of α f will be continuous at the origin.

Solution. Note that D(f) = R2. Assume first, α ≥ 1. Then, we have

lim
(x,x)→(0,0)

1

x2(α−1)
= +∞.

Thus, f is discontinuous at (0, 0) when α ≥ 1. Assume α ∈ (0, 1), we observe that

−(x2 + y2)1−α ≤ xy

(x2 + y2)α
≤ (x2 + y2)1−α

Here we used the fact that

−(x2 + y2) ≤ xy ≤ (x2 + y2), ∀x, y ∈ R.
Thus, by the squeeze theorem we get

lim
(x,y)→(0,0)

xy

(x2 + y2)α
= lim

(x,x)→(0,0)
(x2 + y2)1−α = lim

(x,x)→(0,0)
−(x2 + y2)1−α = 0 = f(0, 0).

Therefore, f is continuous at (0, 0) when α ∈ (0, 1). Assume α ≤ 0, then it follows that

lim
(x,x)→(0,0)

xy

(x2 + y2)α
= lim

(x,x)→(0,0)
xy(x2 + y2)−α = 0 = f(0, 0).

Consequently, f is continuous at (0, 0) when α < 1.
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4.8 Properties of continuous functions of two vari-

ables

Let f and g are continuous functions at (a, b). Then

• The sum of continuous function f(x, y) + g(x, y) is continuous at (a, b).

• The product of continuous functions f(x, y)g(x, y) is continuous at (a, b).

4.9 Continuity of functions of more than two vari-

ables

Definition 4.9.1 Let f(x, y, z) be a function of three variables defined on D. We say
that f is continuous at (a, b, c) ∈ D if

1. f(a, b, c) exists

2. lim(x,y,z)→(a,b,c) f(x, y, z) exists

3. lim(x,y,z)→(a,b,c) f(x, y) = f(a, b, c).

4.10 Partial derivative of a function of two variables

Definition 4.10.1 Let f(x, y) be a function of two variables. Then the partial derivative
of f with respect to x, written as ∂f

∂x
or fx is defined by

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h
.

The partial derivative of f with respect to y, written as ∂f
∂y

or fy is defined by

∂f

∂y
(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h
.

Definition 4.10.2 Use the definition of the partial derivative to calculute ∂f
∂x

and ∂f
∂y

where
f(x, y) = x2(y + 1).

Solution. By the definition of the partial derivative, we have

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
= lim

h→0

(x+ h)2(y + 1)− x2(y + 1)

h
= 2x(y + 1),
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and
∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h
= lim

h→0

x2(y + h+ 1)− x2(y + 1)

h
= x2.

From this we observe that we get ∂f
∂x

by fixing y and differentiating f with

respect to x. Similarly, we get ∂f
∂y

by fixing x and differentiating f with respect
to y.

Example 4.10.1 Calculate ∂f
∂x

and ∂f
∂y

of

f(x, y) = xy(x2 + y2 + 1).

We have
∂f

∂x
= y(x2 + y2 + 1) + 2x2y,

and
∂f

∂y
= x(x2 + y2 + 1) + 2y2x.

Example 4.10.2 Solve exercise 4 in recitation 3.

4.11 Higher order partial derivatives

Definition 4.11.1 Let f(x, y) be a function of two variables. The second order partial
derivatives of f(x, y) are defined by

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
= fxx;

∂2f

∂xy
=

∂

∂x

(
∂f

∂y

)
= fxy;

∂2f

∂yx
=

∂

∂y

(
∂f

∂x

)
= fyx;

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
= fyy

Example 4.11.1 Calculute ∂2f
∂x2

and ∂2f
∂xy

of

f(x, y) = x2 + y2.

We have
∂f

∂x
= 2x

and
∂f

∂y
= 2y.

Then,
∂2f

∂x2
= 2,

∂2f

∂xy
= 0.

Example 4.11.2 Solve exercise 5 in recitation 3.
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Remark 5 In general we do not have fxy(x, y) = fyx(x, y). For example, consider
f(x, y) = xy(x2 − y2)/(x2 + y2) for (x, y) 6= (0, 0) and f(0, 0) = 0. Through direct
calculations we get fxy(0, 0) = −1 and fyx(0, 0) = 1.

Theorem 4.11.3 (Schwarz’s theorem) Suppose that f is defined on D. If fxy and fyx
are continuous on D then fxy(x, y) = fyx(x, y).

4.12 The chain rule

Suppose x = g(u, v) and y = h(u, v) are differentiable functions of u and v, and let
z = f(x, y) is a differentiable function of x and y. Then

z = f(g(u, v), h(u, v))

is differentiable of u and v and

∂z

∂u
=
∂g

∂u

∂f

∂x
+
∂h

∂u

∂f

∂y
,

∂z

∂v
=
∂g

∂v

∂f

∂x
+
∂h

∂v

∂f

∂y
.

Example 4.12.1 Solve exercise 7 in recitation 3.


