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Symmetric Key Encryption

▪ Secret Key Encryption

▪ The same key is used for both encryption and decryption.

▪ Both parties agree on a private key beforehand.



▪ Principle

Secret Key Encryption
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Encryption Decryption

Encrypted message X
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Secret Key Encryption



4

DES, AES, IDEA, 3DES, CAST, Skipjack, 
Serpent, Mars…

Advantages: Very fast 
Disadvantage: Unsecured key transfer

Symmetric Key Algorithms



To communicate securely
➔ 

Use a key for each pair
➔

(n2 –n) / 2  keys

Examples:

4 users 6 keys

5 users 10 keys

10 users 45 keys

Symmetric Key Algorithms



Objective of secret key algorithms

✓Seeking perfection = Seeking randomness

the encrypted message must appear as random 
as possible to limit the risk of attack

Symmetric Key Algorithms



Random Feistel Bijection
• Choose a random function f having n bits as arguments
• Encrypt blocks divided into two parts Left and Right

➢ Encryption:     L = D and R = G xor f(D)
➢ Decryption:    D = L and G = R xor f(L)

We repeat the Feistel diagram a number of times (rounds)
(in DES, the number of rounds = 16)
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DES (Data Encryption Standard)

▪ DES was the official encryption tool of the US government
(until 2005), developed by IBM in the 1970s.

▪ 64-bit block and 64-bit secret key encryption system

DES: 
- SYMETRIC 
- REVERSIBLE 
- BLOCK-BASED 
- SECRET-KEY



9

DES KEY

The DES key is a 64-bit string: only 56 bits are actually used to 
define the key. The remaining 8 bits (8, 16, 24, 32, 40, 48, 56, 
64) are parity bits

256 possible keys (≈ 72 millions of billions possibilities)
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DES: ENCRYPTION STEPS

Steps:

DES uses a secret key of 56 bits, which it transforms into 16 "sub-keys" of 48 bits each (one for each
iteration). The encryption process consists of 19 steps:

▪ 1st step
The first step is a fixed (standard) transposition of the 64 bits to be encrypted.

▪ Following 16 steps
The following 16 steps can be divided into 2 "sub-steps" each. Firstly, the 64-bit block is split into
2x32 bits, and a substitution is performed between these two blocks; in fact, these two blocks will
simply be exchanged with each other. Secondly, the 32-bit block with the highest weight (the block
ranging from bit #32 to bit #63) undergoes a transposition controlled by the sub-key corresponding
to the current step.

▪ Steps 18 and 19
The last two steps are two transpositions.

Plaintext message = Series of 64-bit blocks
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DES ENCRYPTION DIAGRAM
56-bit key

Sub-key generator

Key 1 Key 2 Key 3 Key 16Plaintext 
block

Step1

Step 2.1 Step 2.2

Step 18

Step 19

Ciphertext 
blockStep 2.1 Step 17.2

Substitution of two 32-
bit sub-blocks

Transposition controlled by 
the current key

16 Sub-steps



Initial 64-bit block

Initial block of 64 bits

R0L0

L1 = R0 D1 = L0 xor f(R0,K1)

L16 = R15 D16 = L15 xor f(R15,K16)

Final 64-bit block

Initial block of 64 bits

Initial permutation

Separation into 2 sub-blocks

First iteration

Second iteration

Block reconstitution

Final permutation



13

Triple-DES



AES (Advanced Encryption Standard)

▪ The algorithm proceeds in blocks of 128 bits, with a 
key of 128 bits as well.

▪ Each block undergoes a sequence of 5 transformations 
repeated 10 times.



1. Addition of the secret key (by a XOR).

2. Nonlinear byte transformation: the 128 bits are divided into 16 blocks of 8 bits, themselves 
distributed in a 4×4 table. Each byte is transformed by a nonlinear function S.

3. Row shift: the last 3 rows are shifted cyclically to the left: the 2nd row is shifted by one 
column, the 3rd row by 2 columns, and the 4th row by 3 columns.

4. Column scrambling: Each column is transformed by linear combinations of the different 
elements of the column (i.e: multiplying the 4×4 matrix by another 4×4 matrix).

5. Addition of the turn key: At each round, a round key is generated from the secret key by a 
sub-algorithm. This round key is added by a XOR to the last block obtained.

AES: ENCRYPTION STEPS



5 transformations repeated 10 times

AES: ENCRYPTION DIAGRAM

Input: 128-bit block

Output: 128-bit block

Next round

Round key

Row shift

Row shift Out of the algorithm

Key

Round key 
generator
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Public Key Encryption
o Asymetric encryption

o 2 keys: public and private

o A message encrypted with one of the two keys can only be 

decrypted with the other key

Algorithms: RSA, Diffie-Hellman, ElGamal, DSA…

Advantages:
100 users, we use 100 pairs of keys (4950 keys for a symetric encryption).

Disadvantages:
- Public key algorithms are complex and are 100 to 1000 times slower than secret 

key algorithms.
- Public key cryptosystems are vulnerable to certain attacks



▪ Principle
Public Key Encryption

ENCRYPTION DECRYPTION

ENCRYPTED MESSAGE

PUBLIC KEY

PRIVATE KEY



▪ Principle
Public Key Encryption



RSA (Rivest, Shamir, Adelman)

▪ Developed in 1978 by Ronald Rivest, Adi Shamir and Leonard Adelman.

▪ Most public key cryptosystems are based on this algorithm.

▪ Based on Factorization



Mathematical principles of RSA

▪ Congruence

Consider n an integer such as: n ≥ 2

We say that a is congruent to b modulo n, if (a-b) is divisible by n

We note: a ≡ b  (mod n)

Example 
Because 28 – 2 is divisible by 26



▪Modular addition

Consider a,b and n integers : 

a + b  (mod n) = a  (mod n) + b  (mod n)

Example 
Calculate : 133 + 64  (mod 26) 

Mathematical principles of RSA



▪Modular multiplication

Consider a,b and n integers: 

a × b  (mod n) = a  (mod n) × b  (mod n)

Example 
Calculate: 3 × 27  (mod 26) 

Mathematical principles of RSA

then



▪ Factorization complexity

The complexity estimates the calculation time (or the 
number of elementary operations) necessary to perform 

an operation

Mathematical principles of RSA

Factorize 1591?

Calculate 37 × 43

Calculate p × q is more easier than factorize n = pq



▪ Factorization complexity

Mathematical principles of RSA

▪ The sum of two digits (eg. 6+8) is of complexity 1

▪ The sum of two integers of n digits is of complexity n

▪ Example: 1234+2323: 4 additions

▪ The multiplication of two integers of n digits is of complexity n2

▪ Example: 1234 × 2323: 16 multiplications



▪ Complexity of multiplying  and factorizing 
numbers of n digits

Mathematical principles of RSA



Find out an efficient method to caclulate ak  (mod n)

Mathematical principles of RSA
▪ Modular exponentiaition

Example: Let’s calculate 511 (mod 14)

We notice that 11 in base 2 = (1,0,1,1) then 11 = 8 + 2 + 1 

511 = 58 × 52 × 51

Let’s calculate 52’ (mod 14):

Consequence:



Mathematical principles of RSA
▪ Modular exponentiaition

Example: calculate 17154 (mod 100)

We notice that 154 in base 2 = (1,0,0,1,1,0,1,0) then 154 = 128 + 16 + 8 + 2

17154 = 17128 × 1716 × 178 × 172

Let’s calculate 17, 172, 174, 178,…, 17128 (mod 100):



▪ Prime number

Each positive integer a (a > 1) is said to be prime number if 
its only divisors are 1 and itself

▪ Coprime numbers

Two integers a and b are coprime numbers if gcd(a,b)=1

Mathematical principles of RSA



▪ Fermat’s Little Theorem
If p is a prime number and a is an integer then:

ap ≡ a  (mod p)

▪ Corollary
if p does not divide a then:

ap-1 ≡ 1  (mod p)

▪ Example: p = 3, a = 2
• 23 ≡ 2  (mod 3)
• 22 ≡ 1  (mod 3)

Mathematical principles of RSA



Consider p and q two distinct prime nulbers and let n = pq 
For each integer a such that gcd(a,n)=1 we have:

a(p-1)(q-1) ≡ 1  (mod n)

▪ Example : p = 5, q = 7
• n = p × q = 35
• (p - 1) × (q - 1) = 4 × 6 = 24
• For a = 1, 2, 3, 4, 6, 8, 9, 11, 12, 13,..   a24 ≡ 1 (mod 35) 

Mathematical principles of RSA

▪ Improved Fermat’s Little Theorem



▪ Principle of the Euclidean Algorithm

pgcd(a,b) = pgcd(b, a  mod(b))

▪ Extended Euclidean Algorithm

Calculate the Bézout coefficients u and v such that:
au+bv = gcd(a,b)

Mathematical principles of RSA



▪ The inverse modulo n

ax ≡ 1  (mod n)

Let a and x two integers, we say that x is an inverse of a 
modulo n if:

•a has an inverse modulo n if and only if: gcd(a,n)=1

• If au + nv = 1 then u is an inverse of a modulo n

Example :
3 × 9 ≡ 1  (mod 26)
9 is an inverse of 3 modulo 26

Mathematical principles of RSA



▪ Encryption parameters
o Look for a difficult problem:
Factorizing an integer that is the product of two distinct prime numbers."
o Calculation of the two keys, public and private:
Using the Euclidean algorithm and Bézout's coefficients.
o Environment:
Calculations are done modulo an integer.
o Decryption:
Thanks to Fermat's Little Theorem.

au+bv = pgcd(a,b)

RSA ENCRYPTION



▪ Encryption steps

▪ Calculation of the public and private keys

▪ Message encryption

▪ Message decryption

RSA ENCRYPTION



Example

Step 1: Keys preparation

Step 1.1: Choice of two prime numbers

Alice performs the following operations:

Choice of two distinct prime numbers p and q

Calculation of n = p × q

Calculation of 𝝋(n) = (p - 1) ×(q-1)

RSA ENCRYPTION



Example

Step 1: Keys preparation

Step 1.2: Choice of an exponent and calculate its inverse

Alice chooses an exponent e such that gcd(e, 𝝋(n)) = 1

Alice calculates the inverse d of e modulo 𝝋(n) using the Extended Euclidean 

Algorithm: d × e ≡ 1 (mod 𝝋(n))

o e = 5 and we have gcd(e, 𝝋(n)) = gcd( 5,64) = 1

▪ 5 ×13 + 64 × (-1) = 1

▪ then 5 × 13 ≡ 1 (mod 64)

▪ the inverse of e modulo 𝝋(n) is d =13

RSA ENCRYPTION



According to the previous example:

Step 1: Keys preparation

Step 1.3: Public key

The public key of Alice is composed of two numbers: n and e

Step 1.4: Private key

Alice keeps secret her private key: d

and

RSA ENCRYPTION



Example

RSA ENCRYPTION

Step 2: Message encryption

Step 2.1: Message

o Bruno wants to sent a secret message to Alice

o He transforms his message into one (or many) integers m

o The integer m verifies 0 ≤ m < n



Example

Step 2: Message encryption

Step 2.2: Encrypted message

o Bruno procures the public key of Alice: n and e

o He calculates the encrypted message x ≡ me (mod n)

o He transmits the message x to Alice

and

Then, The encrypted message is

RSA ENCRYPTION



Example

Step 3: Message decryption

o Alice receives the message n encrypted by Bruno

o Alice decrypts it using her private key d

o m ≡ xd (mod n)

RSA ENCRYPTION

We find again the message m = 10 encrypted by Bruno



RSA ENCRYPTION

E D



Security of RSA

▪ It is presumed difficult to deduce the private key (d) from the public
key (n, e). If one could factorize n to find p and q, it would be
possible to obtain the key d by using e, the public exponent. Thus,
the security of RSA is dependent on the difficulty of the factorization
problem.

▪ Since n is a very large number, it is very difficult to calculate its
decomposition into prime factors.

▪ In practice, n is a number whose binary representation is on the
order of 350 to 400 bits. Indeed, it is important to choose p and q
carefully.
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