Symmetric Key Encryption

- Secret Key Encryption
- The same key is used for both encryption and decryption.
- Both parties agree on a private key beforehand.

Secret Key Encryption

Principle

Secret Key Encryption

Principle

Symmetric Key Algorithms

DES, AES, IDEA, 3DES, CAST, Skipjack, Serpent, Mars...

Advantages: Very fast Disadvantage: Unsecured key transfer

To communicate securely

4 users	6 keys
5 users	10 keys
10 users	45 keys

Symmetric Key Algorithms

Objective of secret key algorithms

Seeking perfection = Seeking randomness

the encrypted message must appear as random as possible to limit the risk of attack

Random Feistel Bijection

- Choose a random function **f** having n bits as arguments
- Encrypt blocks divided into two parts Left and Right
- > Encryption: L = D and R = G xor f(D)
- > Decryption: D = L and G = R xor f(L)

We repeat the Feistel diagram a number of times (rounds) (in DES, the number of rounds = 16)

DES (Data Encryption Standard)

- DES was the official encryption tool of the US government (until 2005), developed by IBM in the 1970s.
- 64-bit block and 64-bit secret key encryption system

DES:

- SYMETRIC
- REVERSIBLE
- BLOCK-BASED
- SECRET-KEY

DES KEY

The DES key is a 64-bit string: only 56 bits are actually used to define the key. The remaining 8 bits (8, 16, 24, 32, 40, 48, 56, 64) are parity bits

2^{56} possible keys (\approx 72 millions of billions possibilities)

DES: ENCRYPTION STEPS

Plaintext message = Series of 64-bit blocks

Steps:

DES uses a secret key of 56 bits, which it transforms into 16 "sub-keys" of 48 bits each (one for each iteration). The encryption process consists of 19 steps:

1st step

The first step is a fixed (standard) transposition of the 64 bits to be encrypted.

Following 16 steps

The following **16 steps** can be divided into **2 "sub-steps"** each. Firstly, the **64-bit block** is **split** into **2x32 bits**, and a substitution is performed between these two blocks; in fact, these two blocks will simply be exchanged with each other. Secondly, the **32-bit block** with the highest weight (the block ranging from **bit #32 to bit #63**) undergoes a transposition controlled by the **sub-key** corresponding to the current step.

• Steps 18 and 19

The last two steps are two transpositions.

DES ENCRYPTION DIAGRAM

11

AES (Advanced Encryption Standard)

- The algorithm proceeds in blocks of 128 bits, with a key of 128 bits as well.
- Each block undergoes a sequence of 5 transformations repeated 10 times.

AES: ENCRYPTION STEPS

- 1. Addition of the secret key (by a XOR).
- **2. Nonlinear byte transformation:** the 128 bits are divided into 16 blocks of 8 bits, themselves distributed in a 4×4 table. Each byte is transformed by a nonlinear function S.
- **3. Row shift:** the last 3 rows are shifted cyclically to the left: the 2nd row is shifted by one column, the 3rd row by 2 columns, and the 4th row by 3 columns.
- **4. Column scrambling:** Each column is transformed by linear combinations of the different elements of the column (i.e. multiplying the 4×4 matrix by another 4×4 matrix).
- **5. Addition of the turn key:** At each round, a round key is generated from the secret key by a sub-algorithm. This round key is added by a XOR to the last block obtained.

AES: ENCRYPTION DIAGRAM

5 transformations repeated 10 times

Public Key Encryption

- Asymetric encryption
- $\circ~$ 2 keys: public and private
- A message encrypted with one of the two keys can only be decrypted with the other key

Algorithms: RSA, Diffie-Hellman, ElGamal, DSA...

Advantages:

100 users, we use 100 pairs of keys (4950 keys for a symetric encryption).

Disadvantages:

- Public key algorithms are complex and are 100 to 1000 times slower than secret key algorithms.
- Public key cryptosystems are vulnerable to certain attacks

Public Key Encryption

Principle

Public Key Encryption

Principle

RSA (Rivest, Shamir, Adelman)

- Developed in 1978 by Ronald Rivest, Adi Shamir and Leonard Adelman.
- Most public key cryptosystems are based on this algorithm.
- Based on Factorization

Congruence

Consider **n** an integer such as: **n** ≥ **2**

We say that a is congruent to b modulo n, if (a-b) is divisible by n

We note: $a \equiv b \pmod{n}$

- $28 \equiv 2 \pmod{26}$, Because 28 2 is divisible by 26
- $85 = 26 + 59 \text{ donc } 85 \equiv 59 \pmod{26}$
- $85 = 3 \times 26 + 7$ donc $85 \equiv 7 \pmod{26}$

Modular addition

Consider **a**,**b** and **n** integers :

 $a + b \pmod{n} = a \pmod{n} + b \pmod{n}$

Example Calculate : 133 + 64 (mod 26)

Modular multiplication

Consider **a**,**b** and **n** integers:

 $a \times b \pmod{n} = a \pmod{n} \times b \pmod{n}$

Example Calculate: 3 × 27 (mod 26)

Factorization complexity

- 5 × 7 =?
- 35 =?
- Factorize 1591?
- Calculate 37 × 43
- Calculate $p \times q$ is more easier than factorize n = pq

The complexity estimates the calculation time (or the number of elementary operations) necessary to perform an operation

Factorization complexity

Addition

- The sum of two digits (eg. 6+8) is of complexity 1
- The sum of two integers of n digits is of complexity n
- Example: 1234+2323: 4 additions

Multiplication

- The multiplication of two integers of n digits is of complexity n²
- Example: 1234×2323 : 16 multiplications

Factorisation : exp(4n^{1/3})

Mathematical principles of RSA Complexity of multiplying and factorizing numbers of n digits

n	multiplication	factorisation
3	9	320
4	16	572
5	25	934
10	100	5 528
50	2 500	2 510 835
100	10 000	115 681 968
200	40 000	14 423 748 780

Mathematical principles of RSA Modular exponentiaition

Find out an efficient method to caclulate a^k (mod n)

```
Example: Let's calculate 5<sup>11</sup> (mod 14)
```

```
We notice that 11 in base 2 = (1,0,1,1) then 11 = 8 + 2 + 1
```

```
5^{11} = 5^8 \times 5^2 \times 5^1
```

Let's calculate 5^{2'} (mod 14):

```
\begin{array}{ll} 5 \equiv 5 \pmod{14} \\ 5^2 \equiv 25 \equiv 11 \pmod{14} \\ 5^4 \equiv 5^2 \times 5^2 \equiv 11 \times 11 \equiv 121 \equiv 9 \pmod{14} \\ 5^8 \equiv 5^4 \times 5^4 \equiv 9 \times 9 \equiv 81 \equiv 11 \pmod{14} \end{array}
```

Consequence:

$$5^{11} \equiv 5^8 \times 5^2 \times 5^1 \equiv 11 \times 11 \times 5$$
$$\equiv 11 \times 55 \equiv 11 \times 13 \equiv 143 \equiv 3 \pmod{14}$$

Mathematical principles of RSA Modular exponentiaition

Example: calculate 17¹⁵⁴ (mod 100)

We notice that 154 in base 2 = (1,0,0,1,1,0,1,0) then 154 = 128 + 16 + 8 + 2

$$17^{154} = 17^{128} \times 17^{16} \times 17^8 \times 17^2$$

Let's calculate 17, 17², 17⁴, 17⁸,..., 17¹²⁸ (mod 100): 17 \equiv 17 (mod 100) 17² \equiv 17 \times 17 \equiv 289 \equiv 89 (mod 100) 17⁴ \equiv 17² \times 17² \equiv 89 \times 89 \equiv 7921 \equiv 21 (mod 100) 17⁸ \equiv 17⁴ \times 17⁴ \equiv 21 \times 21 \equiv 441 \equiv 41 (mod 100) 17¹⁶ \equiv 17⁸ \times 17⁸ \equiv 41 \times 41 \equiv 1681 \equiv 81 (mod 100) 17³² \equiv 17¹⁶ \times 17¹⁶ \equiv 81 \times 81 \equiv 6561 \equiv 61 (mod 100) 17⁶⁴ \equiv 17³² \times 17³² \equiv 61 \times 61 \equiv 3721 \equiv 21 (mod 100) 17¹²⁸ \equiv 17⁶⁴ \times 17⁶⁴ \equiv 21 \times 21 \equiv 441 \equiv 41 (mod 100)

 $\begin{array}{l} 17^{154} \equiv 17^{128} \times 17^{16} \times 17^8 \times 17^2 \equiv 41 \times 81 \times 41 \times 89 \\ \equiv 3321 \times 3649 \equiv 21 \times 49 \equiv 1029 \equiv 29 \pmod{100} \end{array}$

Prime number

Each positive integer **a** (**a** > **1**) is said to be prime number if its only divisors are **1** and **itself**

Coprime numbers

Two integers **a** and **b** are coprime numbers if **gcd(a,b)=1**

Fermat's Little Theorem

If **p** is a prime number and **a** is an integer then:

 $a^p \equiv a \pmod{p}$

Corollary

if p does not divide a then:

 $a^{p-1} \equiv 1 \pmod{p}$

- Example: p = 3, a = 2
 - $2^3 \equiv 2 \pmod{3}$
 - $2^2 \equiv 1 \pmod{3}$

Improved Fermat's Little Theorem

Consider p and q two distinct prime nulbers and let n = pq For each integer a such that gcd(a,n)=1 we have:

 $a^{(p-1)(q-1)} \equiv 1 \pmod{n}$

• Example : p = 5, q = 7

•
$$n = p \times q = 35$$

•
$$(p - 1) \times (q - 1) = 4 \times 6 = 24$$

• For a = 1, 2, 3, 4, 6, 8, 9, 11, 12, 13,.. $a^{24} \equiv 1 \pmod{35}$

Principle of the Euclidean Algorithm

pgcd(a,b) = pgcd(b, a mod(b))

Extended Euclidean Algorithm

Calculate the Bézout coefficients *u* and *v* such that: a*u*+b*v* = gcd(a,b)

The inverse modulo n

Let **a** and **x** two integers, we say that **x** is an inverse of **a** modulo **n** if:

$ax \equiv 1 \pmod{n}$

```
Example :

3 \times 9 \equiv 1 \pmod{26}

9 is an inverse of 3 modulo 26
```

• a has an inverse modulo n if and only if: gcd(a,n)=1

• If **au** + **nv** = 1 then **u** is an inverse of **a** modulo **n**

Encryption parameters

\circ Look for a difficult problem:

Factorizing an integer that is the product of two distinct prime numbers."

• Calculation of the two keys, public and private:

Using the Euclidean algorithm and Bézout's coefficients.

au+bv = pgcd(a,b)

• Environment:

Calculations are done modulo an integer.

• **Decryption:**

Thanks to Fermat's Little Theorem.

Encryption steps

- Calculation of the public and private keys
- Message encryption
- Message decryption

Step 1: Keys preparation

Step 1.1: Choice of two prime numbers

Alice performs the following operations:

Choice of two distinct prime numbers **p** and **q**

Calculation of $n = p \times q$

Calculation of $\varphi(\mathbf{n}) = (\mathbf{p} - 1) \times (\mathbf{q} - 1)$

•
$$p = 5$$
 et $q = 17$
• $n = p \times q = 85$
• $\varphi(n) = (p - 1) \times (q - 1) = \varphi(n) = 64$

Step 1: Keys preparation

Step 1.2: Choice of an exponent and calculate its inverse

Alice chooses an exponent **e** such that $gcd(e, \varphi(n)) = 1$

Alice calculates the inverse d of e modulo $\varphi(n)$ using the Extended Euclidean

Algorithm: $\mathbf{d} \times \mathbf{e} \equiv 1 \pmod{\varphi(n)}$

- e = 5 and we have $gcd(e, \varphi(n)) = gcd(5, 64) = 1$
 - $5 \times 13 + 64 \times (-1) = 1$
 - then $5 \times 13 \equiv 1 \pmod{64}$
 - the inverse of e modulo $\varphi(n)$ is d =13

Step 1: Keys preparation

Step 1.3: Public key

The public key of Alice is composed of two numbers: *n* and *e*

Step 1.4: Private key

Alice keeps secret her private key: d

According to the previous example:

n = 85 and e = 5d = 13

Step 2: Message encryption

Step 2.1: Message

- Bruno wants to sent a secret message to Alice
- He transforms his message into one (or many) integers *m*
- $\circ~$ The integer m verifies 0 \leq m < n ~

Step 2: Message encryption

Step 2.2: Encrypted message

- Bruno procures the public key of Alice: *n* and *e*
- He calculates the encrypted message $x \equiv m^e \pmod{n}$
- He transmits the message **x** to Alice

Step 3: Message decryption

- Alice receives the message *n* encrypted by Bruno
- Alice decrypts it using her private key d
- \circ **m** \equiv **x**^d (mod **n**)

Security of RSA

- It is presumed difficult to deduce the private key (d) from the public key (n, e). If one could factorize n to find p and q, it would be possible to obtain the key d by using e, the public exponent. Thus, the security of RSA is dependent on the difficulty of the factorization problem.
- Since n is a very large number, it is very difficult to calculate its decomposition into prime factors.
- In practice, n is a number whose binary representation is on the order of 350 to 400 bits. Indeed, it is important to choose p and q carefully.