

Series of Exercises Chapter 03 Propagation of E.M Waves

For free space (void/air) use: $\varepsilon_0 = 8.85 \times 10^{-12} [S.I]$; $\mu_0 = 4\pi \times 10^{-7} [SI]$

Exercise 01:

A traveling wave is described by $y = 10 \sin(\alpha z - \omega t)$. Sketch the wave at t = 0 and at $t = t_1$, when it has advanced by $\lambda/_8$, if the velocity is taken to be $3 \times 10^8 \left[\frac{m}{s}\right]$ and the angular frequency $\omega = 10^6 \left[\frac{rad}{s}\right]$. Repeat for

 $\omega = 2 \times 10^6 \left[\frac{rad}{s} \right]$

Exercise 02:

Determine the propagation constant γ for a material having $\mu_r = 1$, $\varepsilon_r = 8$, $\sigma = 0.25 \times 10^{-12} [S/m]$, if the wave frequency f = 1.6[MHz].

Exercise 03:

We give the electric phasor component of E.M wave propagating in free space through +z-direction:

$$\tilde{e} = E_0 \cdot e^{-kz} \overrightarrow{a_E}$$

Using the first Maxwell's equation, show that the electric field could not have any component along the z-axis.

Exercise 04:

Given the following electric field in free space:

 $\vec{E} = E_0 . \sin(\omega t - k. z) \vec{a}_y$

1. Find the fields: \vec{D} ; \vec{B} and \vec{H} .

2. show that these fields constitute a propagating E.M wave along z-axis.

3. Using the 4th Maxwell equation, find the velocity of propagation of this wave.

4. Verify that the quotient $\eta = E/H$ depends only on the physical properties of the propagation medium, and calculate the numerical value.

Exercise 05:

We admit that the electric field of the previous exercise is given in the complex form as follows:

 $\vec{E} = 30\pi . e^{j(10^8 t - k.z)} \vec{a}_{\nu}$

Find the expressions of both magnetic induction and magnetic field: \vec{B} et \vec{H} .

Exercise 06:

Let's consider the following electric field:

 $\vec{E} = 10. e^{-\beta z} e^{j(\omega t - k.z)} \vec{a}_x [V/m]$ Arriving with a frequency $f = \frac{\omega}{2\pi} = 100[MHz]$ on the surface of a copper conductor with $\sigma = 58[MS/m]$. 1. Examine the attenuation of this wave once entering this conductor by finding the value of β . 2. What will be the intensity of this field after crossing 5 times the characteristic distance in this conductor (skin depth)?

Exercise 07:

1. For a wave frequency f = 1.6[MHz], determine the propagation constant of the given wave in a medium characterized by:

 $\mu_r = 1; \varepsilon_r = 8; \ \sigma = 0.25 \times 10^{-12} [S/m].$

2. Find the penetration depth δ in Aluminum, for the same frequency, with: $\mu_r = 1$; $\sigma = 38.2 \times 10^6 [S/m]$.

3. Deduce the constant and velocity of propagation in this material.

Exercise 08:

Give the frequency for which, we can consider Earth as a perfect dielectric medium, if we know that:

 $\mu_r = 1; \varepsilon_r = 8; \sigma = 5 \times 10^{-3} [S/m]$

remember that for such a medium, the limit characterizing this situation is given by the condition:

$$\frac{\sigma}{\omega\varepsilon} \le \frac{1}{100}$$

Find the attenuation coefficient β in this case, and state if it can be assumed zero at these conditions?

Exercise 09:

The electric field of a 1[MHz] plane wave traveling in the +z direction in air points along the *x* direction.

If this field reaches a peak value of $1.2\pi \left[\frac{mV}{m}\right]$ at t = 0 and z = 50 [m], obtain expressions for E(z, t) and H(z, t).

Exercise 10:

Examine in the plane z = 0 the following field: $\vec{E}(z,t) = 10 \sin(\omega t + \alpha z) \vec{u}_x + 10 \cos(\omega t + \alpha z) \vec{u}_y$ For: $\omega t = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi$

Exercise 11:

In free space the electric component of E.M wave is given by:

 $\vec{E}(z,t)[V/m] = 50\cos(\omega t - \alpha z)\vec{u}_x$

1. Deduce the expression of magnetic field $\vec{H}(z, t)$

2. Calculate the average value of the Poynting vector of this E.M wave.

3. Find the average E.M wave power crossing a circular area of radius R = 2.5[m] in the plane z = cont.