1st Year LMD ST/SM, 1st Year Engineer

Djilali BOUNAAMA University of Khemis Miliana Faculty of Sciences and Technology Department of Material Sciences/Technology

Exercise Series N° 4

Exercise 1:

One mole of a solid substance, initially at 25°C, is introduced into a preheated oven at 900°C. Knowing that between 25°C and 900°C, this substance remains solid and its molar heat capacity at constant pressure is equal to 30 J.K^{-1} .mol⁻¹

- 1) Calculate the entropy change of the solid.
- 2) Calculate the variation in entropy exchanged between the oven and the solid.
- 3) Deduce the variation in entropy created during the heating process.

Exercise 2 :

We heat, at atmospheric pressure, one mole of iodine (I₂, s) from 25° C to 150° C. Knowing that under these conditions, solid iodine melts at 114° C. Determine, under these conditions, the entropy change created during this transformation.

We give:

 $\Delta H^{\circ}_{fusion}(I_2, s) = 15,6 \text{ KJ/mol}; c_p(I_2, s) = 54,6 \text{ J/K.mol}; c_p(I_2, l) = 81,5 \text{ J/K.mol}.$

Exercise 3 :

Let's consider the following equilibrium: $CH_3CHO(g) \longrightarrow CH_2=CHOH(g)$ We ask for:

- 1) The expression of the law of mass action relating to partial pressures.
- 2) The value of the equilibrium constant K_P at 25°C knowing that the entropy change ΔS°_R of the reaction is practically zero and that the enthalpy changes ΔH°_f have the values -166.35 KJ/ mol for CH₃CHO and -130.70 KJ/mol for CH₂=CHOH.
- 3) Specify the most stable chemical form.
- 4) What happens to K_P if the temperature is 100°C (assuming ΔH°_R is constant between 25°C and 100°C).
- 5) Study the influence of temperature and pressure variations on the previous equilibrium.

Exercise 4:

Consider the following gas phase equilibrium:

 $N_2(g) + O_2(g) \implies 2 \operatorname{NO}(g)$

1) Complete the following table of thermodynamic data for temperature $T_1 = 298$ K.

Compounds	$N_{2}(g)$	$O_2(g)$	NO (g)
C _p (J/K.mol)	29,12	29,36	29,86
S° (J/K.mol))	191,49	205,03	210,62
$\Delta \mathrm{H}^{\circ}_{\mathrm{f}} (\mathrm{KJ/mol})$?	?	90,37
ΔG°_{f} (KJ/mol)	?	?	?

- 2) Calculate the enthalpy of the reaction at temperature $T_2 = 318$ K. We will assume that the molar heat capacities of the gases are constant in the temperature range considered.
- **3**) Calculate the value of the equilibrium constant at temperature T_2 .
- 4) In which direction does the equilibrium shift as the temperature increases? When equilibrium is reached, what would be the influence of the introduction of an inert gas?

Exercise 5 :

Given the following equilibrium achieved at 298 K:

HgO (s) \longrightarrow Hg (l) + O₂ (g)

- 1) Balance the reaction and calculate the change in free enthalpy of the reaction at 298 K.
- 2) Calculate the pressure of oxygen in equilibrium with HgO (solid) at 298 K.
- 3) In which direction will the equilibrium shift if:
- **a**) The temperature is increased?
- **b**) The total pressure is increased?
- c) HgO (solid) is added at constant temperature?

We give: $\Delta H^{\circ}_{f}(HgO) = -90,71 \text{ KJ/mol}$; S° (HgO) = 72 J/K.mol; S° (Hg) = 77,4 J/K.mol;

 $S^{\circ}(O_2) = 205,03 \text{ J/K.mol.}$