<u>1.1. Introduction :</u>

Thermodynamics is the science that aims to study the exchanges of energy that accompany changes in state and chemical reactions

<u>1.2. Definition of the thermodynamic system and the surroundings :</u> <u>1.2.1. Definition:</u>

A **thermodynamic system** is a set of substances confined in space by a **boundary** (wall). Everything outside the system to which energy or matter is exchanged is called its **surroundings (external environment)**. The system and the surroundings together make up the **universe**.

The universe = The system + The surroundings

1.2.2. Types of systems:

we distinguish three types of systems:

*** Isolated system:** Can not exchange either energy or matter with its surroundings. <u>Example:</u> the universe, calorimeter.

* **Closed system:** Can exchange energy but not matter with its surroundings. <u>Example:</u> electric batteries, internal combustion engine.

***Open system:** Can exchange both energy and matter with its surroundings. <u>Example:</u> living being, wood fire.

1.3. Description of a thermodynamic system:

<u>1.3.1. Thermodynamic properties or variables :</u>

The parameters or variables which are required to specify the state of the thermodynamic system are called thermodynamic variables, Examples : pressure, volume, temperature, number of moles.....

1.3.2. Types of thermodynamic variables

***Intensive variables:** are independent of the mass (amount of matter). They are non-additive. <u>Examples :</u> Temperature, pressure, specific heat capacity, density.....

*Extensive variables: depend on the mass (amount of matter). They are additive. Examples : Volume, mass, number of moles, entropy, heat capacity, enthalpy.....

1.3.3. State function:

*Definition :

A state function is a mathematical relationship that links the thermodynamic variables of a system. Its change depends only on the initial and final states of the system and not on the path taken by the system.

*Mathematical properties of state functions:

Let's consider a function of two variables x and y (F(x, y)). The differential form of this function is written:

 $\mathbf{dF} = \frac{\partial \mathbf{F}}{\partial \mathbf{x}} |\mathbf{y} \cdot \mathbf{dx} + \frac{\partial \mathbf{F}}{\partial \mathbf{y}} |\mathbf{x} \cdot \mathbf{dy}|$ $\frac{\partial F}{\partial x}$: 1st partial derivative of F with respect to x. $\frac{\partial F}{\partial y}$: 1st partial derivative of F with respect to y. The differential of a state function (dF) is an exact total differential (E.T.D); if : $\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}$ $\frac{\partial^2 F}{\partial x \partial y}$: 2nd cross derivative of F with respect to y.

 $\frac{\partial^2 F}{\partial x \partial x}$: 2nd cross derivative of F with respect to x.

Example 1: $F(x, y) = x^2 + y^2$ $\frac{\partial F}{\partial x} = 2x \quad \text{and} \quad \frac{\partial F}{\partial y} = 2y$ $\frac{\partial^2 F}{\partial x \partial y} = 0 \quad \text{and} \quad \frac{\partial^2 F}{\partial y \partial x} = 0$ $\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}$; Therefore dF is ETD, hence: F(x, y) is a state function.

Example 2 :

$$PV = nRT \longrightarrow V = \frac{nRT}{P} = V(P,T)$$
$$dV = \left(\frac{\partial V}{\partial T}\right) dT + \left(\frac{\partial V}{\partial P}\right) dP$$
$$\frac{\partial V}{\partial T} = \frac{nR}{P} \quad ; \text{ and } ; \quad \frac{\partial V}{\partial P} = -\frac{nRT}{P^2}$$
$$\frac{\partial^2 V}{\partial T \ \partial P} = -\frac{nR}{P^2} \quad ; \text{ and } ; \quad \frac{\partial^2 V}{\partial P \ \partial T} = -\frac{nR}{P^2}$$

 $\frac{\partial^2 V}{\partial T \partial P} = \frac{\partial^2 V}{\partial P \partial T}$; so; the volume is a fonction state.

1.4. Ideal gas equation of state :

* **Definition** :

An ideal gas is a theoretical gas whose molecules occupy negligible space (volume) and have no interactions.

***Ideal gas equation of state :**

The equation of state for ideal gases is given by: PV = nRTWith: P: Gas pressure. V: Gas volume. T: Gas temperature.

Dr H. BOUKHATEM

n: number of moles of gas.

R: Ideal gas constant.

R = 0.082 atm.L/mol.K; $R = 8.314 \text{ Pa.m}^3/\text{mol.K}$; R = 2 cal/mol.K

This equation of state combines the three laws obeyed by ideal gases :

A/ Law of BOYLE - MARIOTTE:

At constant temperature (T = constant), the volume of an ideal gas varies inversely with its pressure as follows:

<mark>PV = Cte</mark>

B/ Law of GAY – LUSSAC:

At constant pressure (P = constant), the volume of a gas is proportional to the temperature: $\frac{V}{r} = Cte$

C/ Law of CHARLES :

At constant volume (V = constant), the pressure of a gas is proportional to the temperature. $\frac{P}{r} = Cte$

D/ Law of Dalton (mixture of ideal gases):

Let's consider a mixture of several gases, contained in a volume V_t , placed at a temperature T and subjected to a pressure P_t .

*The application of the ideal gas law to the gas mixture gives: $P_tV_t = n_tRT$

*The application of the ideal gas law to each gas in the mixture gives: $P_iV_t = n_iRT$

With: P_i is the partial pressure of gas i (pressure exerted by gas i as if it was alone in the volume V_t).

*Dalton's law defines that the total pressure exerted by a mixture of ideal gases is equal to the sum of the partial pressures of the constituents. $P_t = \sum_{i=1}^{n} P_i$

*We also have : $P_i = x_i P_t$; with $x_i = \frac{n_i}{n_i}$ x_i : Molar fraction

1.5. Thermodynamic equilibrium :

Thermodynamic equilibrium is a state of a system in which there is no change occurs within the system over time. There are different types of thermodynamic equilibrium:

- **Thermal equilibrium:** The temperature of the system remains constant.
- **Mechanical equilibrium:** The pressure of the system remains constant.
- **Chemical equilibrium:** the chemical composition (concentration) of the system remains constant.

1.6. Possible transfers between the system and the surroundings :

The system interacts with its surroundings through:

*Mass transfer.

*Energy transfer (in the form of heat (Q) and work (W)).

Sign convention:

*Everything received is positive.

*Everything that is lost is negative.

Work and heat are considered **positive** when the system receives them from the surroundings, and **negative** when the system loses them.

<u>1.7. Transformations of the state of a system (Thermodynamic processes) :</u>

Transformation is any modification of the system that leads to a final state different from the initial state. We distinguish:

***Isobaric transformation (Isobaric process):** occurs at constant pressure (P = constant).

*Isochoric transformation (Isochoric process): occurs at constant volume (V = constant).

*<u>Isothermal transformation (sothermal process)</u>: occurs at a constant temperature (T = constant).

*<u>Adiabatic transformation (Adiabatic process)</u>: occurs without heat exchange between the system and the surroundings (Q = 0).

*<u>Reversible transformation (Reversible process)</u>: is a transformation in which the system and the surroundings return to their original states ($P_{int} = P_{ext}$).

*<u>Irreversible transformation (Irreversible process)</u>: is a transformation in which the system and the surroundings do not return to their original states ($P_{int} \neq P_{ext}$).

<u>1.8. Physical and chemical transformations :</u>

1.8.1. Physical transformation (Physical process):

Is a transformation that does not change the nature of the matter, during which chemical species are not modified. <u>Example:</u> change of state.

1.8.2. Chemical transformation (Chemical process):

Is a transformation that changes the nature of matter, during which chemical species disappear (the reactants) and new chemical species appear (the products).

Example: Chemical reaction (Combustion reaction)

 $CH_4 + 2 O_2 \longrightarrow CO_2 + 2 H_2O$

1.9. Clapeyron diagram:

It is a thermodynamic diagram representing, for a system, the variation of pressure as a function of volume P = f(V). Isothermal, isochoric, isobaric, and adiabatic transformations can be represented on the Clapeyron diagram (P, V).

<u>1.10. Concept of temperature:</u>

A/ Definition of temperature:

Temperature (T) is a measure of the average kinetic energy of the translational, vibrational, and rotational motions of matter's particles (molecules, atoms) in the system.

B/ Temperature scales:

*Celsius scale (Centigrade scale) :

Noted °C. On this scale, the melting and boiling temperatures of water under atmospheric pressure (p = 1 atm) are: 0°C and 100°C, respectively.

*Kelvin scale (Absolute scale):

Noted **K**. The melting and boiling temperatures of water correspond to 273.15 and 373.15 K at atmospheric pressure. 0° K corresponds to -273.15°C. The relationship between the Kelvin scale and the Celsius scale is given by:

$\mathbf{T}(\mathbf{K}) = \mathbf{T}(^{\circ}\mathbf{C}) + \mathbf{273.15}$

*Fahrenheit scale:

Noted °**F**, on this scale the melting and boiling temperature of water under atmospheric pressure (P=1atm) are respectively 32 °F and 212 °F. The relationship between the Fahrenheit scale and the Celsius scale is given by: $T(^{\circ}F) = 1.8 T(^{\circ}C) + 32$

*Rankine scale:

Noted °**R**. The relationship between the Fahrenheit scale and the Rankine scale is given by: $T(^{\circ}R) = T(^{\circ}F) + 459.67$

<u>1.11. Concept of pressure:</u>

A/ Definition of pressure:

Pressure (P) is defined as the force exerted per unit area. P=F/S

B/ Pressure units:

*[P] : N. m⁻² = Pa (Pascal)
*[P] : bar
*[P] : atm (Atmosphere)
*[P] : mmHg (Millimeter mercury)
*[P] : Torr (Torricelli)
1 atm = 1.01325.10⁵ Pa = 1.01325 bar = 760 mmHg = 760 Torr.

1.12. ZERO principle of thermodynamics:

« If two thermodynamic systems are each in thermal equilibrium with a third one, then they are in thermal equilibrium with each other »

