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[1I. Propagation of E.M Waves

Wave’s equation

1. Differential equation of the wave
We call the 2" order differential equation of

the following form (1D space):
9> 9>
322 —F(x,t) —a— 32

the wave’s equation, and the function F(x,t)

F(x,t)=0

verifying this equation (solution of the
equation) is called the wave function.
The unit homogeneity implies that:
1 mj\?2
als?.m™2| > —|m?.s72| = (v [—D
a S
This allows to rewrite the wave’s equation:

i K 1 92

axz F(x t) ——zﬁF(x,t) =0

One can deduce that v represent the

propagation velocity of the wave.

In 3D space, the wave’s equation can be

generalized:
62
AF(x,y,z,t) — 23t —F(x,y,2,t)=0
9z 9%  9?

With: A= W'l- E-'- @

In this case, the propagation velocity could be

given as 3D vector:
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Wave’s equation

2. Solution of the wave’s equation

Let’s focus on the 1D space equation:
62 aZ
—F ) t) — — F ) t) = 0
a2 B0 —aga FoD)

We can recognize the difference of two
squares identity: (a®> — b?) = (a—b).(a + b)

in the differential operator:

2 2
<6 14 >F(x,t)

Ox2 2 ot2

(2 18\ (8 10\, .
~\ox wvoat) \ox Tvar) YT

Consequently a variable change could be

performed here.

The following variable change is considered:

X(x, t) =x—vt
Y(x,t) =x+ vt

It will be easy to prove that:
(0 19 _ 0

dx vt Zﬁ

0,10 _,0
dx vat oY

Which leads to the new form of the differential

.

equation:

d/[d
¥ <ﬁ> F(X,Y) =0

Supporting a solution of the type:
F(X,)Y) =A(X) + B(Y)
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Wave’s equation

2. Solution of the wave’s equation
The wave’s function could be written with
original variables x and t:

F(x,t) = A(x —vt) + B(x + vt)
Indicating that both solutions A and B
represent propagation in both directions +v
and —v.

Besides that, A and B functions should be
periodic functions to satisfy the 2"? order
differential equation of the wave:

A(x,t) = aq.sin(x — vt) + a,.cos(x — vt)

B(x,t) = by.sin(x + vt) + b,.cos(x + vt)

The coefficients a; and b; could be determined

by initial and boundary conditions.

In the simplest case of 1D space, the

propagating wave in the +x direction, then

only the function A(x —vt) is considered

(by = by, = 0).

Besides that, if we consider att = 0 and x =0

position we have: A(0,0) = 0, We can deduce

easily that the solution is of the form (a, = 0):
A(x, t) = aq.sin(x — vt)

This corresponds to a sinusoidal function with

an amplitude a,.
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3. Derivation of E.M wave’s equations

Wave’s equation

Let’s consider the general set of Maxwell’s From (II) we get:
equations for a given medium characterized VA (V A E_)) - V(V E) — AE
- 0B - o
with an electric permittivity € and magnetic VA <— a) =V (g) — AE
permeabilrity W B % (_V) A ﬁ) _7 (g AR
—_ — . p _
vE=% () a( - dE\ _/p -
9B ~ge\Wl +negy) =7 (G) - aF
<V/\E=—E (IT) AE—MSE—ME]):_V)(£>
V.B=0 (IIT) L 2 "ot £
oF Since j = oE:
VAB=uyJ+pe— AV ,  9%E a_, 1

By applying the following rule on (II) and (1V):
VA (VAZ) = T(V.4) - 14
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3. Derivation of E.M wave’s equations In the case of void (air) medium with no
From (1IV) one can also derive the following charge (p = 0,& = &, u = Wo):
iom i . [ 9%E OF
equation in the same wcgl. AE — 1o, e 0 (Eq.3.3)
9°B 0B < - t
AB — pe——po—=20 (Eq.3.2) . 0’B 0B
at ot kAB — Ho&o 57 ~ M0 5o =0 (Eq.3.4)

Finally, we will get the following system of 2"

_ _ _ Which shows that we get a 2" degree
degree differential equations:

( O2F 6 1 differential equations without constant terms
AE - peoy a2 ~ M95; at ~ Vp (homogeneous equations).
Spat.var. p _—t/ D"r—/ rr_/
3 TOPAgAtion - VISpErsion - SOuree It should be noticed that 1%t degree terms :
AB o5 B _y

B adr T oF o8

Spatvar. i 0t Uoo — and poo— came from the presence of
Propagation Dispersion ot at

non-null current.
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Wave’s equation

3. Derivation of E.M wave’s equations
In the same medium, both equations (3.3) and
(3.4) will be reduced in case of absence of

currents (j = 0):

( 02E

AE [1080 a > =0 (Eq35)
4 -

AB 0°B _ 0 Eq.3.6
\ Hoéo EY R (Eq.3.6)

These equations are identical to general
wave’s equation (3D), and by identification we

can find that propagation velocity:

1
V=—

JHE

Application (5min):

Calculate vy = in the void (Air), and

VHoEo
comment your finding.

£=¢gy=8.85x10"12[C2. N"1.m?
p=po=4m X 1077[N.A™?]
The first measurements of light speed by ’
Bradley in 1729 (3.01 x 10%[m/s]), then
Fizeau in 1849 (3.15x10°[m/s]), and _° :
Foucault in 1862 (2.98 x 108[m/s]).

We find:

Vo = _299><108[ ]

1
VHo€o

Maxwell’s treatise in Electricity an

Magnetism was published in 1873!!!
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3. Derivation of E.M wave’s equations

Wave’s equation

The most important results of Maxwell's work was the linking between light and
Electromagnetic fields:

“Light is electromagnetic wave propagating in the void with a speed ¢ = 3 x 10%[m/s]”

The differential equations (3.5) and (3.6) will support a periodic functions as solutions of the
following form:

E@ t) = E,.cos (?E — wt)

Where E is the wave vector to be determined.
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1. The general solution in free space
Let’s go back to the first system of 2"? differential

equations including 15t order time term (p = 0):

[ 9%E OF
< — —

AB o°B 9B _ 0 Eq.3.4
\ Hoéo at2 Hoo at (Eq.3.4)

10min Test: We propose the following form as general
solutions of (3.3) & (3.4). Replace them and deduce the
new differential equations of space phasors é(1*) & b(¥) :
E@ t) =e@). et = e(x,y,2).e't

B(# t) = b(¥). et = b(x,y, z). e'®!
With: e'*t = cos wt + i.sin wt,i> = —1

We need just to replace both solutions in

equations (3.3) and (3.4):
2 (s iwt
A(é(?). eiwt) _ ﬂga (e(arzze ) _ ﬂd%(é(7)-eiwt) =0
_ . 8%(b(7). et a .
A(b(#).e't) — ue ( (art)ze )_ [wa(b(?). el®t) = 0

This will give us the new space-differential
equations:

e'“tAe(¥) + pew?e(@)e't — impoe(¥)e'®t = 0
e'“'Ab(¥) + pew?b(@)e'*t — iwuch()e'®t = 0
To be reduced to (phasor’s equations):

Ae(®) + [new? — iwpale@) =0

AB(TF) + |pew? — iowpo|b(¥) = 0
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1. The general solution in free space

By introducing complex permittivity:
o
e,=e—i—=¢€—ig" &g =¢¢&" =
w

We got: k?* = pe . w? = pw? le — iﬁ = —y?% = (iy)*

ela

Finally, the 2"? order space differential
equations known as Helmholtz equation of

E.M wave could be written :
Ne(T) + k*e(¥) =0 (Eq.3.7)
Ab(¥) + k*b(¥) =0 (Eq.3.8)
Consequently, solutions are of the form:
e(®) = E’Oeiikﬁ.ﬁ) — E’Oeii(?fc))
b(@) = §’0 etik(@w) — 1_3’0 eii(?ﬁ)
E, and B,: maximal amplitudes.

Planar E.M. waves

Where: k = w\1g\J1 —i%/p: = a + ip
is known as “Wave number”’.
And the parameter y is called “propagation

constant”

In the specific case of lossless medium:
c=0-€&"=0

The wave number is purely real and the

propagation is done without loss of the

strength of E.M wave, and we have:
= o 2m  2m|rad
COVREE L T T A | m
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Planar E.M. waves

1. The general solution in free space
Replacing now e(¥) and 5(7") in the general
expression:

E(@ t) = é(r). et = E’Oei(wtﬁﬁ)

B(@ t) = b(¥). et = B, pl(wt7k)

Since fo and §0 are amplitudes at initial

For instance, if we consider two waves

represented by their electric fields, taken as

the real part of complex phasors:

E1(F,0) = |Eql-Re [ (70)| 5 g = 0

E:Z (?, t) = |E20|9%e [ei(wti7.z+”/2)] u: 0, = 1'[/2

conditions they could be written: 1.0}
E, = E(0,0) = Egtiy = |Eglei®ouy °°f
By, = B(0,0) = Bylig = |Byle'®0tip %%
@o: initial phase of the wave —05t

-1.0}

IAVIAWIS
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Planar E.M. waves

2. Phasors Maxwell’s equations
One of the important results of the previous
solutions given in complex notation, is the new
form of Maxwell equations. Indeed, let’s take the
following expressions of E.M fields:

E@ t) = é(7). el

HF t) = h(¥). elt
When replaced in the Maxwell questions, taking in

consideration that (similarly for H(7,t)) :

dE(F t) o|e(®).e | _ - de'vt
= = e(r

— i S iwt
3 3 T = iweée(r).e

7
V.6 = g O
!VAe =—iwuh (ID)
V.h=0 (I1D)
VAR =j+iwee (Iv)

Which could be rewritten by taking j = oe,
we get in free space (p = 0 - p = 0):

V.e=0 (D
< zA é = —iwuh (IT)
V.h=0 (I1I)
\V} Ah = iwe, 8 (1IV)

With: e, = € — i% as introduced above.
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3. Spherical and Planar waves
According to previous results, both electric and

magnetic fields verifying differential equations are
of the form:
EG t) = EgetiFh)giot — F eilottik) (gg 3 9)
B ©) = ByetiFh)eiot = B ei(wti1k) (£q 3 10)
Along positive direction, physical solutions are:

(—) — . — 7
E,t) = Eg.Re e8| (Eq.3.11)
<

\E’(?, t) = By. e [e!@ K| (Eq.3.12)

Such wave is propagating in all directions with the
same intensities, therefore it constitutes a spherical

wave.

Planar E.M. waves

Spherical

Radiating wavefront
antenna 1

/ \
/ l, \ \
\ |
\
\
\ \ / /
/
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3. Spherical and plane waves
A wave produced by a localized source, such as an antenna, expands outwardly in the form of a
spherical wave. Even though an antenna may radiate more energy along some directions than

along others, the spherical wave travels at the same speed in all directions.

To an observer very far away from the source, however, Uniform plane wave—_
the wavefront of the spherical wave appears

approximately planar, as if it were part of a uniform . ol A
\

plane wave with identical properties at all points in the 15 Db

plane tangent to the wavefront. Plane waves are easily

described using a Cartesian coordinate system, which is

mathematically easier to work with than the spherical ’

coordinate system needed to describe spherical waves.
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4. Uniform plane waves

It the case of plane waves, it is possible to
choose an arbitrary cartesian direction to
point the propagation direction along one of
the XYZ axes. For instance if we take the +z-
direction, so one can write the wave number
vector: k = ki,

And the scalar product will reduce the spatial
term to: 7.k = (xti, + yi, + zu,). ki, = kz
Thus, the expression of electric field will be:

E@ t) = e(¥). el®t = |Ey|ei(@t-kz+po)yj,

U = au, + bu,, + cu,; a, b, c are cosine directors

Planar E.M. waves

When replaced in the first Maxwell equation a
free space as propagation medium (p = 0):

—

V. E = V (lEolei(wt_?'Té-l_(po)ﬁE) =0

o 8,7 D (4, ) + a,e” "k (U, )

=0 =0

+ aze_i(kz) (l_izﬁE) =0- ﬁz.'l_l)E =0
~—_——————
=—ike~i(kz)£0

Which means that ¢ = 0:

i = aii, + bi,
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4. Uniform plane waves
The previous result, will allow us to write the electric field with its XY components:

E(@ t) = |Eg|e'@t=kzt90) (i, + bu,)
Now let’s use the second Maxwell equation: VAE = — ‘Z—’j —

- a(lBO | ei(wt—kz+(p0)1—iB)
at

v) A (lEolei(wt—kz+<P0) (Cli_ix + bﬁy)) = — _iwlBolei(a)t—kz+(p0)ﬁ>B

Performing the curl on the left hand and simplifying similar terms will produce:
kE

—ikE(—bliy + atiy) = —iwBup — Up = — (~bi, + aii,)
Consequently, it will be easy to verify that g L Uy, which implies that E(7,t) and B(7,t) are

orthogonal.
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4. Uniform plane waves

Therefore, the plane electromagnetic wave
propagating in the +z-direction, could be
represented by both electric and magnetic
fields lying on XY plane, with a practical
choice (a=1,b = 0):

E'(?, t) — |E0|ei(wt—kz+<p0)ﬁ>x

Planar E.M. waves

Thus, the plane EXM wave propagating in a

given direction, is represented by two
orthogonal EM fields Ilying on the
perpendicular plan of the propagation

direction given by the wave vector k.

The vectors E, B and k form a direct trihedral.

B’(?, t) — |BO|ei(wt—kz+<p0)ﬁ>y

Taking the real part of each phasor: ._41'./_. Ll

ﬁ \

E(¥,t) = Egcos(wt — kz + @o)u,

B(# t) = Bycos(wt — kz + Po)uy
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5. Relation between E and H: intrinsic impedance
By considering now that both E.M fields are lying on XY-plane and oriented along u, and Tiy,

respectively, the use of the second Maxwell equation will provide the following relation between E

and H (or between E and l_f), called the “intrinsic impedance” of the given medium of propagation:

ElV/m w w . E E .
—IkE = —iwuH — LV/m] g n[Q] = s =|nle® «H=—=—e %
H[A/m] k w\/pu(e —ig'") n Inl

10min Test: In the case of free space,

where: U = Uy, € = £y, &'’ = 0, Calculate n,.

Po =4m X 1077S.1;e, = 8.85 x 107128.1
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Planar E.M. waves

5. Relation between E and H: intrinsic impedance
By considering now that both E.M fields are lying on XY-plane and oriented along u, and Tiy,

respectively, the use of the second Maxwell equation will provide the following relation between E

and H (or between E and l_f), called the “intrinsic impedance” of the given medium of propagation:

ElV/m| pw

—ikE = —iwuH — = n[Q]

H[A/m] k

- w\/u(e’ — ig'")

. E E
HW =|n|eu9(_)H=__

— _ _p-i0
n |nl

10min Test: In the case of free space,

where: U = Uy, € = £y, &'’ = 0, Calculate n,.

Po =4m X 1077S.1;e, = 8.85 x 107128.1

The intrinsic impedance of free space:

How Ko

k=wJue - nygy=———=
o W+ Koo €0

_ [ AmXA0TT | aootal = 1207(0]
~ |8 85x10-12 = aun
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Planar E.M. waves

6. Wave propagation in dielectrics

We now extend our analytical treatment of the
uniform plane wave to propagation in a
dielectric of permittivity € and permeability pu.
The medium is assumed to be homogeneous
(having constant u and & with position) and
isotropic (in which u and ¢ are invariant with
field orientation). The expression of the wave

number obtained before is:

k = w\/ue\/l — ig”/g =a+if
With: £ = =

w

Resolving this equation, one can find a and f:

o)
p-of{ 1o

Back to the general form of E.M fields and

1/2

replacing with complex form of wave number:

E'(?, t) — |E0|ei(wt—(a+iﬁ)kz+(p0)ﬁ>x

B ©) = |Bylel@t-(atif)zro0)y
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Planar E.M. waves

6. Wave propagation in dielectrics

The EM phasors could be separated into
complex and real exponential functions:

E@ t) = |Eg|le Bzeilwt-az+ooy;

B(# t) = |Byle Fzel@t-azteoy
Now, taking the real parts, physical EM fields
are written as:

E@ t) = |Eole P?cos(wt — az + @y,

B@# t) = |Byle Pcos(wt — az + Po)u,y

This indicates the phase wave velocity:

w 2T
Vy="—"A=—
a a

For a good dielectric medium (o <), one can

assume with good approximation that: gg—',' <1,

which implies using limited development:

o 1
a=w us;ﬂ=§ -

w 1 2T

= - A=
w\[UE JUE w+\/UE

IR

Up

The intrinsic impedance could be obtained :
Uw

e
k  w/pe —ie" 8,\/ 1-i€/,
E

n:

With approach of small numbers expansion:

T L€ _ u( . 0)
= /— 1 = /— 1+i—o
4 e’( T 28’) e\ 20
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7. Wave propagation in conductors

In this case o >, we can assume with a good

Er

approximation that : ;zi» 1, the wave

number :

144

£
k = pew? — iopo = w+/ ue' 1—i?

Could be rewritten with good approximation:

o ow
k = wJiE /—ia = JHEGoV—i = ”7(1 — i)

By identification: k = a + if:
UOW

Planar E.M. waves

Similarly, taking the real parts, physical EM

fields are written as:
E@ t) = |Egle P?cos(wt — az + @),

B t) = |Bgle Pcos(wt — az + Po)uy

The intrinsic impedance in the case could be

obtained in similar way:

pe po  [pew V2 (o
k a+ip No (1-i) 20

n= (1+1i)
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8. Wave attenuation and skin depth

E@ t) = |Eple PZcos(wt — az + @g)u,

p=1/50
e 1=0.367
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8. Wave attenuation and skin depth

It is clear that the physical signification of
is the attenuation of E.M fields strength, by
a coefficient of /.= 0.135 each specific

distance:

Called “Skin depth” or “penetration depth’.

In the specific case of good conductors:

To measure the attenuation, the argument [z

of attenuated exponential e PZ is called “Neper”

and f is measured by [Np/m|.

) , B =1/10
B TTF e2 = 0.135

Y N S S ——— -
Eye=? bl N
—Eg.e 2 L Lo Vo N e o
—Eq. e L\ e .
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8. Poynting’s theorem and wave power

In order to find the power flow associated with
an electromagnetic wave, it is necessary to
develop a power theorem for the
electromagnetic field known as the Poynting
theorem. It was originally postulated in 1884
by an English physicist, John H. Poynting.
The development begins with the fourth
Maxwell’s equation, in which we assume that
the medium may be conductive:

aD

VAH=]+2
J at

Next, we take the scalar product of both sides

with E:

~ — | =2 — D
E.(V/\H):E.]+E.E

Using thefollowing vectors identity (Chap01):

V.(EAH)=HYAF{EVAH

Using the latter equation in the left side of IV

Maxwell’s equation:
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8. Poynting’s theorem and wave power

Make few adjustments about derivatives, since we know that: D = ¢E;

we can write:

We get:

—V.(E/\H)z—t SBH|+-|SD.E|+E.]

- [ V.@EnH)avf [ 915 H av+ | (5% +[ Bjaw
V . . ’_ V at 2 . . V at 2 . V .

Planar E.M. waves
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8. Poynting’s theorem and wave power

The new form of Poynting'’s equation:

L 9 (1
— i(E/\H).dS =LE<EB.H

a 1—)—) — >
: —|(=D.FE E.
)dv+ fv 6t<2 ) + L ]dii

total E.M power total energy stored Total energy stored Ohmic power
flowing out V through S in magnetic field in electric field dissipated overV

This theorem gives the time rates of increase of energy stored within the volume V, or the

instantaneous power going to increase the stored energy.

The cross product of E and H define the Poynting’s
vector, indicating the power density flowing in the
direction of Pata given point. (homonym “Poynting”

and “pointing” is accidentally “True”)

PWm2|=EAH

The measured value of Poynting value is an average
value over a specific time (period) and could be
obtained using general phasors:

D =_—1 I * i 2 ,—2pBz
(?)_?_Zme[E/\H]oczlnlEoe

With: H* is the conjugate of H
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Planar E.M. waves

9. Polarization of EZM wave

Let’'s consider a non attenuated plane E.M
wave given by its electric and magnetic fields
lying on the plane corresponding to the wave
front, normal to the incidence direction
(using space phasors):

E‘)(Z, t) — E'O .ewt; ﬁ(z, t) — HO .eiwt

AAGE
TP

In general, the electric field (and magnetic
field) did not keep the same orientation on
the wave plane, and it could vary with time
and traces a curve by the tip of the field vector
on the plane.
In such situation, the electric field (similarly
the magnetic field), could be divided into two
components on the wave front plane (x-y in
this case) propagating in +z-direction, :

E(z) = Ex(2)u, + E,(2)u,
And we can set:

E'x(Z) = Exoe_ikz; E'y(Z) = Eyoe_ikz
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9. Polarization of EZM wave

Both initial amplitudes E,, and E,, are in general complex numbers and could be written in

exponential form:
E,.o = axei‘l’x; EyO — ayei‘l’y
With: a, = |Ex0| > 0; ay = |Ey0| >0
Consequently, we can rewrite E(z):
E(z) = a,e”*e'%xi, + aje "2y, - E(2) = e"*2e'%x(a, i, + a,e'?u,)
With: ¢ = @, — @, called the phase difference between E(z) and E ,(z)
For the sake of simplicity, we can choose to take ¢, = 0 — ¢ = @,;: E(z) = etk (axfix + ayei"’ﬁy)

Taking the real part of the phasor, we will get the instantaneous electric field:

E(zt) = a,.cos(wt — kz) U, + a,.cos(wt — kz + @) U,
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9. Polarization of EZM wave

The specific cases of the E.M wave polarization
could be discussed upon the values of phase

difference ¢, by analyzing the amplitude of
E(z, t) and its direction:
The amplitude is given by:

Ez,t)| = [E2(z,t) + E2(z,0)]"*

= |aZcos?(wt — kz) + a’cos*(wt — kz + (p)]l/2

The direction is dictated by the inclination angle:

_(Ey(2, 1)
Y(z,t) = tan™! <Ex(z, t)>

Planar E.M. waves

a. Linear polarization ¢ = 0 or m:

For ¢ = 0 (in-phase):
E(z t) = cos(wt — kz + ¢)(ay. U, + a,.u,)

E(z,t)| = |a2 + a? V2| cos(wt — kz)|
y
a,

Y(z,t) = tan™?! <a_>

X
The amplitude is indeed function of z and t,

whereas the direction is not (fixed direction).

A

v




[1I. Propagation of E.M Waves

9. Polarization of EZM wave

The specific cases of the E.M wave polarization
could be discussed upon the values of phase

difference ¢, by analyzing the amplitude of
E(z, t) and its direction:
The amplitude is given by:

Ez,t)| = [E2(z,t) + E2(z,0)]"*

= |aZcos?(wt — kz) + a’cos*(wt — kz + (p)]l/2

The direction is dictated by the inclination angle:

_(Ey(2, 1)
Y(z,t) = tan™! <Ex(z, t)>

Planar E.M. waves

a. Linear polarization ¢ = 0 or m:

For ¢ = m (out-phase):
E(z t) = cos(wt — kz + ¢)(ay. U, — a,.u,)

|E(z,t)| = [a? + af,]l/zlcos(wt — k2)|
—a
Y(z,t) = tan‘1< y)
ax
The amplitude is indeed function of z and t,
whereas the direction is not (fixed direction).

A

v




[1I. Propagation of E.M Waves

9. Polarization of EZM wave

The specific cases of the E.M wave polarization
could be discussed upon the values of phase

difference ¢, by analyzing the amplitude of
E(z, t) and its direction:
The amplitude is given by:

Ez,t)| = [E2(z,t) + E2(z,0)]"*

= |aZcos?(wt — kz) + a’cos*(wt — kz + (p)]l/2

The direction is dictated by the inclination angle:

_(Ey(2, 1)
Y(z,t) = tan™! <Ex(z, t)>

Planar E.M. waves

b. Circular polarizationp = +%/,,a, =a, = a

For ¢ =™/, (Left Circular Polarization):
E(z t) = a(cos(wt — k2)1, — sin(wt — kz)u,)

|E(z, t)| =a
—a. sin(wt — kz))

Y = tan™ ( a.cos(wt — kz) = —(wt—kz)

The direction is tracing a circular movement

in counter-clockwise direction.

A

v




[1I. Propagation of E.M Waves

9. Polarization of EZM wave

The specific cases of the E.M wave polarization
could be discussed upon the values of phase

difference ¢, by analyzing the amplitude of
E(z, t) and its direction:
The amplitude is given by:

Ez,t)| = [E2(z,t) + E2(z,0)]"*

= |aZcos?(wt — kz) + a’cos*(wt — kz + (p)]l/2

The direction is dictated by the inclination angle:

_(Ey(2, 1)
Y(z,t) = tan™! <Ex(z, t)>

Planar E.M. waves

b. Circular polarizationp = +%/,,a, =a, = a

For ¢ = —™/, (Right Circular Polarization):
E(z t) = a(cos(wt — k2)1, + sin(wt — kz)u,)

|E(z, t)| =a
a.sin(wt — kz)

a.cos(wt — kz)

Y = tan™! ( > = (wt — kz)

The direction is tracing a circular movement

in counter-clockwise direction.

A




[11. Propagation of E.M Waves Planar E.M. waves

9. Polarization of E.M wave b. Elliptical polarization
The specific cases of the E.M wave polarization 0<ep<T/ 2,0x F Ay

could be discussed upon the values of phase
difference ¢, by analyzing the amplitude of I
E(z, t) and its direction:

The amplitude is given by:

Ez,t)| = [E2(z,t) + E2(z,0)]"*

= |aZcos?(wt — kz) + a’cos*(wt — kz + (p)]l/2

The direction is dictated by the inclination angle:

_(Ey(2, 1)
Y(z,t) = tan™! <Ex(z, t)>
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[1I. Propagation of E.M Waves

Reflection and refraction

1. Normal incidence

When a travelling wave reaches an interface

between two different regions, it is partly

reflected and partly transmitted, with the
magnitude of the two parts determined by the
constants of the two regions:

Incident wave:
Ei(z) = Efe 173,
i
Eg

1
H (z) =—u,NE' =
N1

e_‘klzu
y
N1

Reflected wave:

ET(Z) — lklzux
- ~ E;
A7 (2) = — (i) B =~

elklzu
y
N1 N1

Transmitted wave:
E'(z) = Eje
1
H'(z) = —u,NE' =
N2
E! X
A
HiQL— k;
E'
4—(>L :
kr HI'
Ne,

Medium 1 (g1, uy, 01)

z=0

lkzzux
t

Lo _
—e ‘kzzuy
N2

’?CZ
Medium 2 (&, 1p, 07)



[1I. Propagation of E.M Waves

Reflection and refraction

1. Normal incidence

The total electric field E(z) in medium 1 is the

sum of the electric fields of the incident and

reflected waves, and a similar statement

applies to the magnetic field H,(z) . Hence,
Ei(z) = E(2) + E"(2) = (Eje 17 + Egett1?)u,

(Eae—iklz _ ESeiklz) .

Uy
N1
With only the transmitted wave present in

Hy(z) = H'(2) + H"(2) =

medium 2, the total fields are

E,(z) = E'(2) = E\e k27,
- ~ EY .
Hy(2) = H'(2) = e ikezyj

N2 Y

Assuming normal incidence, At the boundary
(z = 0), the tangential components of the

electric and magnetic fields are continuous.

Hence,
E,(0) = E;(0) - E} + E}, = E},
_ _ E. E" Et
H,(0) = Hy(0) > 2 -2=22
M M N2

Solving these equations for Ejand E}, in terms of

E} gives:
r N2 _]11) i i
= E,=TE
0 (le +n1) ° °
2 . .
E} =< 2 )E:, = TE}
N2 + M1

The quantities I' and t are called the reflection
and transmission coefficients (t=14+1T)




[1I. Propagation of E.M Waves

2. Oblique incidence
A wave of arbitrary polarization may be described as the

superposition of two orthogonally polarized waves: one
with its electric field parallel to the plane of incidence
(parallel polarization) and the other with its electric field
perpendicular to the plane of incidence (perpendicular
polarization).

The perpendicular polarization where the plane of
incidence is coincident with the x-z plane (y = 0), is
given with E perpendicular to the plane of incidence and
it also called transverse electric (TE) polarization because

E is perpendicular to the plane of incidence.

Reflection and refraction

Medium 1 Medium 2

(€1, U1) (&2, U2)
z=0

(a) Perpendicular polarization




[11. Propagation of E.M Waves Reflection and refraction

2. Oblique incidence

When E is parallel to the plane of incidence, the k., Ei
polarization is called transverse magnetic (TM)
polarization because in that case it is the magnetic field
that is perpendicular to the plane of incidence.

For the general case of a wave with an arbitrary polarization, it

is common practice to decompose the incident wave (E')", ﬁi) into E|

a perpendicularly polarized component (E‘Lﬁ‘l) and a parallel Hﬁ
. —>l —>l
polarized component (E|, H}). Medium 1 Medium 2
Similar process is used to determine both reflected (f’”, ﬁr) and (H 1, 1 1) (82, Hz)
z=10

transmitted (Et, ﬁt) waves.
(b) Parallel polarization



A. Perpendicular polarization

[1I. Propagation of E.M Waves

2. Oblique incidence

Incidence angle 0;
Reflection angle 0,

Refraction angle 0,

i

¥, =X cos 0, + 2 sin 0,

Xy =X sin &, —z cos O,

Reflection and refraction

X; =Xx sin &; + z cos 6,

- Vi =—X cos 6; + Z sin 0,
=T i

Medium 1 (g, u;)

> Z

Xt = x sin 6; + z cos 6;

yi =—X cos 0; + Z sin 6

Medium 2 (&3, u3)



[1I. Propagation of E.M Waves

Reflection and refraction

2. Oblique incidence

A. Perpendicular polarization

In this case, we will be interested

in perpendicular components:

E' (x,y) = E' jeF1rij,,
. E! N
L (xy) = == e thania,

U5l
With:
X; = X.Sin0; + z.co0s0;
U; = —U,.cos0; + U,.sind;

The incident wave :

i —ri —ikq1(x.sin0@;+z.cosB;)757
“(x,y) =E' ye 1( ' l)uy

The reflected wave :

Tr . rr —ik1x,77 _ pr —ik{(x.sin0,—z.cos0,)73
1(xy) = Elge”" 1 ruy, = E' ge 1 " r)uy

T(x,y) = e e~ tk1(x.sinb;=2.cos8) (Y, cos0; + U,,. sind;)
1

The transmitted wave :

E"i(x, y) = Eﬁ_Oe—ikzxtﬁ’y — Eioe—ikz(x.sin0t+z.coset)1—iy
t

—~ E : ; — — .
H: (x,y) = #0 e~ thz(x.sinbi+2.c0s0) (3 cos0; + U,.sind;)
2

The following interface conditions are applied:

(Eily T Eqiy)L:O - E‘iy

z=0

(H,+H",)

= i
z=0 . z=0

~ E' . ,
i 10 _ .+ . — — .
l| (x, y) - —8e tky (x.5ind; Z'COSH‘)(—ux. COSHi + uy. smHl-)

N1




[11. Propagation of E.M Waves Reflection and refraction

2. Oblique incidence
A. Perpendicular polarization

(E‘ﬂ_y + Eiy) — Eﬁ.y N E‘loe‘ikl(x'“'"ei) + Eioe—ikl(x.siner) — Eioe'"‘Z("'Si"et)
z=0 z=0
. Lo E', .. . . E'y . . ..
(Hj_x + HTJﬂ_x) — Hﬁ_x N —COSHi e—lkl(x.smei) + COSOT e—lkl(x.smer) — COSHt e—lkz(x.sm()t)
z=0 z=0 n1 N1 N2

To satisfy the both equations for all possible values of x (i.e., all along the boundary), it follows that
the arguments of all three exponentials must be equal. That is,

ki1(x.sin@;) = k{(x.sinfB,) = k,(x.sin0;) < k,sinf; = k,sinf, = k,sin0;
Which is known as the phase-matching condition.

The first equality leads to the Snell’s law of reflection, while the second equality leads to the Snell’s

law of refraction:
sin8; ki w\/ug1 nNnq
SinBi B kz B W\ U2 E~ B n,

0; =0,;



[1I. Propagation of E.M Waves

Reflection and refraction

2. Oblique incidence
A. Perpendicular polarization

Using previous results, we get for both equations of E and H :

(Eiy-l'Eg_y)‘ B =Eiy‘ _ _>E5_0+E10=E5_0
z=0 z=0

Lo i Elg
—>c059,-<— — + l>=cos¢9t -

H ,+H"
( = Lx) N1 N1 n2

z=0

These two equations can be solved simultaneously to yield the
following expressions for the reflection and transmission coefficients

in the perpendicular polarization case:

"o _ N2€050; —nycos0,
['J_ = ==

~ EY, mpcosB;+n;cos6,

. :E’io _ 21,€050;
* EY, mpcos6;+nycosb,

These two coefficients are known
formally as the Fresnel reflection
and transmission coefficients for
perpendicular polarization and are

related by :

T, =1+T
If medium 2 is a perfect conductor
(Mm,=0), wegetI' =-—1and T, =
0, respectively, which means that the

incident wave is totally reflected by

the conducting medium.




[11. Propagation of E.M Waves Reflection and refraction

B. Parallel polarization

In this case the same reasoning and development are
used for parallel polarization for all components of
incident, reflected and transmitted wave, to obtain
the Fresnel reflection and transmission coefficients

for parallel polarization:

_ Ejg npcos6, —nycosb;

r,= = .
I |‘|0 N2€080; + n1€0s0; X; = X sin 6;;+ z cos Zi
t Vi =X cos 6; — Z sin 6
. _Ejo 21,€050; . ,
== = = x sin 6, —
I iy M2€0s8; +nycoso; Callbaein P

9. =X cos 6, +2sin G,
With the relation between both coefficients:
c0s0;

Xt=X sin 0t+ZCOS Ht
¥ =X cos 6; — Z sin 6;

T =(1+1))

co0s0, Medium 1 (¢1, 1) Medium 2 (&3, 1)



[11. Propagation of E.M Waves Reflection and refraction

3. Brewster Angle 27,
The Brewster angle 0y is defined as the incidence Water =T Py
angle 0; at which the Fresnel reflection coefficient ~  |(&=81) ___---- T -X - ’
r=0: | ~c " o=
Perpendicular polarization: =~ | ___-=-"" -7 ’
' =0-n,c0s0; =n4c0s0; |Fl\0-6--W6t soil P
or (er=25) L?
. . 1— (u182/01281) |l“|||04" . .o
sinB@; = sin@ 5 = 1= (/1) 1 Dry soil .-
K1/ K2 (6=3) _ ==~ T

Parallel polarization: 024 /

Ir'y=0 —mn3cos0; =nqcos0;

0 1 1 1 1 1 1 1
inp — ciro 1 — (Mzgl/ﬂlgz) 10 20 30 40 50 60 70 80' 90
i |B 1 — (g1/&5)2 (Og dry soil) (65 wet soil) (Og water)

Incidence angle &; (degrees)
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