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Wave’s equationIII. Propagation of E.M Waves

We call the 2nd order differential equation of

the following form (1D space):

𝝏𝟐

𝝏𝒙𝟐
𝑭 𝒙, 𝒕 − 𝜶

𝝏𝟐

𝝏𝒕𝟐
𝑭(𝒙, 𝒕) = 𝟎

the wave’s equation, and the function 𝑭(𝒙, 𝒕)

verifying this equation (solution of the

equation) is called the wave function.

The unit homogeneity implies that:

𝜶 𝒔𝟐. 𝒎−𝟐 →
𝟏

𝜶
𝒎𝟐. 𝒔−𝟐 ≡ 𝒗

𝒎

𝒔

𝟐

This allows to rewrite the wave’s equation:
𝝏𝟐

𝝏𝒙𝟐
𝑭 𝒙, 𝒕 −

𝟏

𝒗𝟐

𝝏𝟐

𝝏𝒕𝟐
𝑭(𝒙, 𝒕) = 𝟎

1. Differential equation of the wave

In 3D space, the wave’s equation can be

generalized:

∆𝑭 𝒙, 𝒚, 𝒛, 𝒕 −
𝟏

𝒗𝟐

𝝏𝟐

𝝏𝒕𝟐
𝑭(𝒙, 𝒚, 𝒛, 𝒕) = 𝟎

With: ∆=
𝝏𝟐

𝝏𝒙𝟐+
𝝏𝟐

𝝏𝒚𝟐+
𝝏𝟐

𝝏𝒛𝟐

In this case, the propagation velocity could be

given as 3D vector:

𝒗 = 𝒗𝒙Ԧ𝒊 + 𝒗𝒚 Ԧ𝒋 + 𝒗𝒛𝒌

One can deduce that 𝒗 represent the

propagation velocity of the wave.



Wave’s equation

Let’s focus on the 1D space equation:

𝝏𝟐

𝝏𝒙𝟐
𝑭 𝒙, 𝒕 − 𝜶

𝝏𝟐

𝝏𝒕𝟐
𝑭(𝒙, 𝒕) = 𝟎

We can recognize the difference of two

squares identity: 𝒂𝟐 − 𝒃𝟐 = 𝒂 − 𝒃 . 𝒂 + 𝒃

in the differential operator:

𝝏𝟐

𝝏𝒙𝟐
−

𝟏

𝒗𝟐

𝝏𝟐

𝝏𝒕𝟐
𝑭 𝒙, 𝒕

=
𝝏

𝝏𝒙
−

𝟏

𝒗

𝝏

𝝏𝒕
.

𝝏

𝝏𝒙
+

𝟏

𝒗

𝝏

𝝏𝒕
𝑭 𝒙 = 𝟎

Consequently a variable change could be

performed here.

2. Solution of the wave’s equation The following variable change is considered:

ቊ
𝑿 𝒙, 𝒕 = 𝒙 − 𝒗𝒕
𝒀 𝒙, 𝒕 = 𝒙 + 𝒗𝒕

It will be easy to prove that:

𝝏

𝝏𝒙
−

𝟏

𝒗

𝝏

𝝏𝒕
= 𝟐

𝝏

𝝏𝑿
𝝏

𝝏𝒙
+

𝟏

𝒗

𝝏

𝝏𝒕
= 𝟐

𝝏

𝝏𝒀

Which leads to the new form of the differential

equation:

𝝏

𝝏𝑿

𝝏

𝝏𝒀
𝑭 𝑿, 𝒀 = 𝟎

Supporting a solution of the type:

𝑭 𝑿, 𝒀 = 𝑨 𝑿 + 𝑩(𝒀)

III. Propagation of E.M Waves



Wave’s equation

The wave’s function could be written with

original variables 𝒙 and 𝒕:

𝑭 𝒙, 𝒕 = 𝑨 𝒙 − 𝒗𝒕 + 𝑩(𝒙 + 𝒗𝒕)

Indicating that both solutions A and B

represent propagation in both directions +𝒗

and −𝒗.

Besides that, A and B functions should be

periodic functions to satisfy the 2nd order

differential equation of the wave:

𝑨 𝒙, 𝒕 = 𝒂𝟏. 𝒔𝒊𝒏 𝒙 − 𝒗𝒕 + 𝒂𝟐. 𝒄𝒐𝒔 𝒙 − 𝒗𝒕

𝑩 𝒙, 𝒕 = 𝒃𝟏. 𝒔𝒊𝒏 𝒙 + 𝒗𝒕 + 𝒃𝟐. 𝒄𝒐𝒔 𝒙 + 𝒗𝒕

2. Solution of the wave’s equation The coefficients 𝒂𝒊 and 𝒃𝒊 could be determined

by initial and boundary conditions.

In the simplest case of 1D space, the

propagating wave in the +𝒙 direction, then

only the function 𝑨(𝒙 − 𝒗𝒕) is considered

(𝒃𝟏 = 𝒃𝟐 = 𝟎).

Besides that, if we consider at 𝒕 = 𝟎 and 𝒙 = 𝟎

position we have: 𝑨 𝟎, 𝟎 = 𝟎, We can deduce

easily that the solution is of the form 𝒂𝟐 = 𝟎 :

𝑨 𝒙, 𝒕 = 𝒂𝟏. 𝒔𝒊𝒏 𝒙 − 𝒗𝒕

This corresponds to a sinusoidal function with

an amplitude 𝒂𝟏.

III. Propagation of E.M Waves



Wave’s equation

Let’s consider the general set of Maxwell’s

equations for a given medium characterized

with an electric permittivity 𝜺 and magnetic

permeability 𝝁:

𝛁. 𝑬 =
𝝆

𝜺
 (𝑰)

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
 (𝑰𝑰)

𝛁. 𝑩 = 𝟎 (𝑰𝑰𝑰)

𝛁 ∧ 𝑩 = 𝝁Ԧ𝑱 + 𝝁𝜺
𝝏𝑬

𝝏𝒕
 (𝑰𝑽)

By applying the following rule on (II) and (IV):

𝜵 ∧ 𝜵 ∧ 𝑨 = 𝜵 𝜵. 𝑨 − ∆𝑨

3. Derivation of E.M wave’s equations

From (II) we get:

𝜵 ∧ 𝜵 ∧ 𝑬 = 𝜵 𝜵. 𝑬 − ∆𝑬

𝜵 ∧ −
𝝏𝑩

𝝏𝒕
= 𝜵

𝝆

𝜺
− ∆𝑬

−
𝝏

𝝏𝒕
𝜵 ∧ 𝑩 = 𝜵

𝝆

𝜺
− ∆𝑬

−
𝝏

𝝏𝒕
𝝁Ԧ𝑱 + 𝝁𝜺

𝝏𝑬

𝝏𝒕
= 𝜵

𝝆

𝜺
− ∆𝑬

∆𝑬 − 𝝁𝜺
𝝏𝟐𝑬

𝝏𝒕𝟐
− 𝝁

𝝏

𝝏𝒕
Ԧ𝑱 = 𝜵

𝝆

𝜺
Since Ԧ𝒋 = 𝝈𝑬:

∆𝑬 − 𝝁𝜺
𝝏𝟐𝑬

𝝏𝒕𝟐
− 𝝁𝝈

𝝏

𝝏𝒕
𝑬 =

𝟏

𝜺
𝜵𝝆 (𝑬𝒒. 𝟑. 𝟏)

III. Propagation of E.M Waves



Wave’s equation

From (IV) one can also derive the following

equation in the same way:

∆𝑩 − 𝝁𝜺
𝝏𝟐𝑩

𝝏𝒕𝟐
− 𝝁𝝈

𝝏𝑩

𝝏𝒕
= 𝟎 (𝑬𝒒. 𝟑. 𝟐)

Finally, we will get the following system of 2nd

degree differential equations:

ด∆𝑬
𝑺𝒑𝒂𝒕.𝒗𝒂𝒓.

− 𝝁𝜺
𝝏𝟐𝑬

𝝏𝒕𝟐

𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏

− 𝝁𝝈
𝝏

𝝏𝒕
𝑬

𝑫𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏

=
𝟏

𝜺
𝜵𝝆 

𝑺𝒐𝒖𝒓𝒄𝒆

ด∆𝑩
𝑺𝒑𝒂𝒕.𝒗𝒂𝒓.

− 𝝁𝜺
𝝏𝟐𝑩

𝝏𝒕𝟐

𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏

− 𝝁𝝈
𝝏𝑩

𝝏𝒕
𝑫𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏

= 0 

3. Derivation of E.M wave’s equations In the case of void (air) medium with no

charge (𝝆 = 𝟎, 𝜺 = 𝜺𝟎, 𝝁 = 𝝁𝟎):

∆𝑬 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑬

𝝏𝒕𝟐
− 𝝁𝟎𝝈

𝝏𝑬

𝝏𝒕
= 𝟎 (𝑬𝒒. 𝟑. 𝟑)

∆𝑩 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑩

𝝏𝒕𝟐
− 𝝁𝟎𝝈

𝝏𝑩

𝝏𝒕
= 𝟎 (Eq.3.4)

Which shows that we get a 2nd degree

differential equations without constant terms

(homogeneous equations).

It should be noticed that 1st degree terms :

𝝁𝟎𝝈
𝝏𝑬

𝝏𝒕
and 𝝁𝟎𝝈

𝝏𝑩

𝝏𝒕
came from the presence of

non-null current.

III. Propagation of E.M Waves



Wave’s equation

In the same medium, both equations (3.3) and

(3.4) will be reduced in case of absence of

currents (𝒋 = 𝟎):

∆𝑬 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑬

𝝏𝒕𝟐
= 𝟎 (𝑬𝒒. 𝟑. 𝟓)

∆𝑩 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑩

𝝏𝒕𝟐
= 𝟎 (Eq.3.6)

These equations are identical to general

wave’s equation (3D), and by identification we

can find that propagation velocity:

𝒗 =
𝟏

𝝁𝜺

3. Derivation of E.M wave’s equations Application (5min):
Calculate 𝒗𝟎 =

𝟏

𝝁𝟎𝜺𝟎
in the void (Air), and

comment your finding.

𝜺 = 𝜺𝟎 = 𝟖. 𝟖𝟓 × 𝟏𝟎−𝟏𝟐 𝑪𝟐. 𝑵−𝟏. 𝒎−𝟐

𝝁 = 𝝁𝟎 = 𝟒𝝅 × 𝟏𝟎−𝟕[𝑵. 𝑨−𝟐]

We find:

𝒗𝟎 =
𝟏

𝝁𝟎𝜺𝟎
= 𝟐. 𝟗𝟗 × 𝟏𝟎𝟖

𝒎

𝒔
The first measurements of light speed by

Bradley in 1729 ( 𝟑. 𝟎𝟏 × 𝟏𝟎𝟖 𝒎/𝒔 ), then

Fizeau in 1849 ( 𝟑. 𝟏𝟓 × 𝟏𝟎𝟖 𝒎/𝒔 ), and

Foucault in 1862 (𝟐. 𝟗𝟖 × 𝟏𝟎𝟖 𝒎/𝒔 ).

Maxwell’s treatise in Electricity and

Magnetism was published in 1873!!!

III. Propagation of E.M Waves



Wave’s equation

The most important results of Maxwell’s work was the linking between light and

Electromagnetic fields:

“Light is electromagnetic wave propagating in the void with a speed 𝒄 ≅ 𝟑 × 𝟏𝟎𝟖 𝒎/𝒔 ”

3. Derivation of E.M wave’s equations

The differential equations (3.5) and (3.6) will support a periodic functions as solutions of the

following form:

𝑬 𝒓, 𝒕 = 𝑬𝟎. 𝒄𝒐𝒔 𝒓. 𝒌 − 𝝎𝒕

𝑩 𝒓, 𝒕 = 𝑩𝟎. 𝒄𝒐𝒔 𝒓. 𝒌 − 𝝎𝒕

Where 𝒌 is the wave vector to be determined.

III. Propagation of E.M Waves



Planar E.M. waves

1. The general solution in free space

Let’s go back to the first system of 2nd differential

equations including 1st order time term (𝝆 = 𝟎):

∆𝑬 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑬

𝝏𝒕𝟐 − 𝝁𝟎𝝈
𝝏𝑬

𝝏𝒕
= 𝟎 (𝑬𝒒. 𝟑. 𝟑)

∆𝑩 − 𝝁𝟎𝜺𝟎

𝝏𝟐𝑩

𝝏𝒕𝟐 − 𝝁𝟎𝝈
𝝏𝑩

𝝏𝒕
= 𝟎 (Eq.3.4)

We need just to replace both solutions in

equations (3.3) and (3.4):

∆ 𝒆 𝒓 . 𝒆𝒊𝝎𝒕 − 𝝁𝜺
𝝏𝟐 𝒆 𝒓 . 𝒆𝒊𝝎𝒕

𝝏𝒕𝟐
− 𝝁𝝈

𝝏

𝝏𝒕
𝒆 𝒓 . 𝒆𝒊𝝎𝒕 = 𝟎

∆ ෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕 − 𝝁𝜺
𝝏𝟐 ෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕

𝝏𝒕𝟐
− 𝝁𝝈

𝝏

𝝏𝒕
෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕 = 𝟎

This will give us the new space-differential

equations:

𝒆𝒊𝝎𝒕∆𝒆 𝒓 + 𝝁𝜺𝝎𝟐 𝒆 𝒓 𝒆𝒊𝝎𝒕 − 𝒊𝝎𝝁𝝈𝒆 𝒓 𝒆𝒊𝝎𝒕 = 𝟎

𝒆𝒊𝝎𝒕∆෩𝒃 𝒓 + 𝝁𝜺𝝎𝟐෩𝒃 𝒓 𝒆𝒊𝝎𝒕 − 𝒊𝝎𝝁𝝈෩𝒃 𝒓 𝒆𝒊𝝎𝒕 = 𝟎

To be reduced to (phasor’s equations):

∆𝒆 𝒓 + 𝝁𝜺𝝎𝟐 − 𝒊𝝎𝝁𝝈 𝒆 𝒓 = 𝟎

∆෩𝒃 𝒓 + 𝝁𝜺𝝎𝟐 − 𝒊𝝎𝝁𝝈 ෩𝒃 𝒓 = 𝟎

III. Propagation of E.M Waves

10min Test: We propose the following form as general

solutions of (3.3) & (3.4). Replace them and deduce the

new differential equations of space phasors 𝒆 𝒓  & ෩𝒃 𝒓  :

෩𝑬 𝒓, 𝒕 = 𝒆 𝒓 . 𝒆𝒊𝝎𝒕 = 𝒆 𝒙, 𝒚, 𝒛 . 𝒆𝒊𝝎𝒕

෩𝑩 𝒓, 𝒕 = ෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕 = ෩𝒃 𝒙, 𝒚, 𝒛 . 𝒆𝒊𝝎𝒕

With: 𝒆𝒊𝝎𝒕 = 𝒄𝒐𝒔 𝝎𝒕 + 𝒊. 𝒔𝒊𝒏 𝝎𝒕, 𝒊𝟐 = −𝟏 



Planar E.M. waves

1. The general solution in free space

By introducing complex permittivity:

𝜺𝒄 = 𝜺 − 𝒊
𝝈

𝝎
= 𝜺′ − 𝒊𝜺′′, 𝜺′ = 𝜺, 𝜺′′ =

𝝈

𝝎

We got: 𝒌𝟐 = 𝝁𝜺𝒄𝝎𝟐 = 𝝁𝝎𝟐 𝜺 − 𝒊
𝝈

𝝎𝜺
= −𝜸𝟐 = 𝒊𝜸 𝟐

Finally, the 2nd order space differential

equations known as Helmholtz equation of

E.M wave could be written :

൝
∆𝒆 𝒓 + 𝒌𝟐 𝒆 𝒓 = 𝟎 (𝑬𝒒. 𝟑. 𝟕)

∆෩𝒃 𝒓 + 𝒌𝟐෩𝒃 𝒓 = 𝟎 (𝑬𝒒. 𝟑. 𝟖)

Consequently, solutions are of the form:

𝒆 𝒓 = 𝑬𝟎𝒆±𝒊𝒌 𝒓.𝒖 = 𝑬𝟎𝒆±𝒊 𝒓.𝒌

෩𝒃 𝒓 = 𝑩𝟎𝒆±𝒊𝒌 𝒓.𝒖 = 𝑩𝟎𝒆±𝒊 𝒓.𝒌

𝑬𝟎 and 𝑩𝟎: maximal amplitudes.

Where: 𝒌 = 𝝎 𝝁𝜺 𝟏 − 𝒊 Τ𝝈
𝝎𝜺 = 𝜶 + 𝒊𝜷

is known as “Wave number”.

And the parameter 𝜸 is called “propagation

constant”

In the specific case of lossless medium:

𝝈 = 𝟎 → 𝜺′′ = 𝟎

The wave number is purely real and the

propagation is done without loss of the

strength of E.M wave, and we have:

𝒌 = 𝝎 𝝁𝜺 =
𝝎

𝒗
=

𝟐𝝅

𝒗𝑻
=

𝟐𝝅

λ

𝒓𝒂𝒅

𝒎

III. Propagation of E.M Waves



Planar E.M. waves

1. The general solution in free space

Replacing now 𝒆 𝒓 and 𝒃 𝒓  in the general

expression:

෩𝑬 𝒓, 𝒕 = 𝒆 𝒓 . 𝒆𝒊𝝎𝒕 = 𝑬𝟎𝒆𝒊 𝝎𝒕±𝒓.𝒌

෩𝑩 𝒓, 𝒕 = ෩𝒃 𝒓 . 𝒆𝒊𝝎𝒕 = 𝑩𝟎𝒆𝒊 𝝎𝒕±𝒓.𝒌

III. Propagation of E.M Waves

Since 𝑬𝟎 and 𝑩𝟎 are amplitudes at initial

conditions they could be written:

𝑬𝟎 = 𝑬 𝟎, 𝟎 = 𝑬𝟎𝒖𝑬 = 𝑬𝟎 𝒆𝒊𝝋𝟎𝒖𝑬

𝑩𝟎 = 𝑩 𝟎, 𝟎 = 𝑩𝟎𝒖𝑩 = 𝑩𝟎 𝒆𝒊𝝋𝟎𝒖𝑩

𝝋𝟎: initial phase of the wave

For instance, if we consider two waves

represented by their electric fields, taken as

the real part of complex phasors:

𝑬𝟏 𝒓, 𝒕 = 𝑬𝟏𝟎 . ℜℯ 𝒆𝒊 𝝎𝒕±𝒓.𝒌 𝒖; 𝝋𝟏 = 𝟎

𝑬𝟐 𝒓, 𝒕 = 𝑬𝟐𝟎 ℜℯ 𝒆𝒊 𝝎𝒕±𝒓.𝒌+ ൗ𝝅
𝟐 𝒖; 𝝋𝟐 = ൗ𝝅

𝟐



Planar E.M. waves

One of the important results of the previous

solutions given in complex notation, is the new

form of Maxwell equations. Indeed, let’s take the

following expressions of E.M fields:

෩𝑬 𝒓, 𝒕 = 𝒆 𝒓 . 𝒆𝒊𝝎𝒕

෩𝑯 𝒓, 𝒕 = ෩𝒉 𝒓 . 𝒆𝒊𝝎𝒕

When replaced in the Maxwell questions, taking in

consideration that (similarly for ෩𝑯 𝒓, 𝒕 ) :

𝝏෩𝑬 𝒓, 𝒕

𝝏𝒕
=

𝝏 𝒆 𝒓 . 𝒆𝒊𝝎𝒕

𝝏𝒕
= 𝒆 𝒓

𝝏𝒆𝒊𝝎𝒕

𝝏𝒕
= 𝒊𝝎𝒆 𝒓 . 𝒆𝒊𝝎𝒕

𝛁. 𝒆 =
𝝆

𝜺
 (𝑰)

𝛁 ∧ 𝒆 = −𝒊𝝎𝝁෩𝒉 (𝑰𝑰)

𝛁. ෩𝒉 = 𝟎 (𝑰𝑰𝑰)

𝛁 ∧ ෩𝒉 = ǁ𝒋 + 𝒊𝝎𝜺𝒆 (𝑰𝑽)

Which could be rewritten by taking ǁ𝒋 = 𝝈𝒆,

we get in free space (𝝆 = 𝟎 → 𝝆 = 𝟎):

𝛁. 𝒆 = 𝟎 (𝑰)

𝛁 ∧ 𝒆 = −𝒊𝝎𝝁෩𝒉 (𝑰𝑰)

𝛁. ෩𝒉 = 𝟎 (𝑰𝑰𝑰)

𝛁 ∧ ෩𝒉 = 𝒊𝝎𝜺𝒄 𝒆 (𝑰𝑽)

With: 𝜺𝒄 = 𝜺 − 𝒊
𝝈

𝝎
as introduced above.

2. Phasors Maxwell’s equations

III. Propagation of E.M Waves
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3. Spherical and Planar waves
According to previous results, both electric and

magnetic fields verifying differential equations are

of the form:

ቐ
෩𝑬 𝒓, 𝒕 = 𝑬𝟎𝒆±𝒊 𝒓.𝒌 𝒆𝒊𝝎𝒕 = 𝑬𝟎𝒆𝒊 𝝎𝒕±𝒓.𝒌 (𝑬𝒒. 𝟑. 𝟗)

෩𝑩 𝒓, 𝒕 = 𝑩𝟎𝒆±𝒊 𝒓.𝒌 𝒆𝒊𝝎𝒕 = 𝑩𝟎𝒆𝒊 𝝎𝒕±𝒓.𝒌 (𝑬𝒒. 𝟑. 𝟏𝟎)

Along positive direction, physical solutions are:

൞
𝑬 𝒓, 𝒕 = 𝑬𝟎. ℜℯ 𝒆𝒊 𝝎𝒕−𝒓.𝒌 (𝑬𝒒. 𝟑. 𝟏𝟏)

𝑩 𝒓, 𝒕 = 𝑩𝟎. ℜℯ 𝒆𝒊 𝝎𝒕−𝒓.𝒌 (𝑬𝒒. 𝟑. 𝟏𝟐)

Such wave is propagating in all directions with the

same intensities, therefore it constitutes a spherical

wave.

III. Propagation of E.M Waves
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3. Spherical and plane waves

To an observer very far away from the source, however,

the wavefront of the spherical wave appears

approximately planar, as if it were part of a uniform

plane wave with identical properties at all points in the

plane tangent to the wavefront. Plane waves are easily

described using a Cartesian coordinate system, which is

mathematically easier to work with than the spherical

coordinate system needed to describe spherical waves.

A wave produced by a localized source, such as an antenna, expands outwardly in the form of a

spherical wave. Even though an antenna may radiate more energy along some directions than

along others, the spherical wave travels at the same speed in all directions.

III. Propagation of E.M Waves
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It the case of plane waves, it is possible to

choose an arbitrary cartesian direction to

point the propagation direction along one of

the XYZ axes. For instance if we take the +𝒛-

direction, so one can write the wave number

vector: 𝒌 = 𝒌𝒖𝒛

And the scalar product will reduce the spatial

term to: 𝒓. 𝒌 = 𝒙𝒖𝒙 + 𝒚𝒖𝒚 + 𝒛𝒖𝒛 . 𝒌𝒖𝒛 = 𝒌𝒛

Thus, the expression of electric field will be:

෩𝑬 𝒓, 𝒕 = 𝒆 𝒓 . 𝒆𝒊𝝎𝒕 = 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝑬

𝒖𝑬 = 𝒂𝒖𝒙 + 𝒃𝒖𝒚 + 𝒄𝒖𝒛; a, b, c are cosine directors

4. Uniform plane waves

III. Propagation of E.M Waves

When replaced in the first Maxwell equation a

free space as propagation medium 𝝆 = 𝟎 :

𝛁. 𝑬 = 𝛁. 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒓.𝒌+𝝋𝟎 𝒖𝑬 = 𝟎

𝝏𝒙𝒆−𝒊 𝒌𝒛

=𝟎

𝒖𝒙. 𝒖𝑬 + 𝝏𝒚𝒆−𝒊 𝒌𝒛

=𝟎

𝒖𝒚. 𝒖𝑬

+ 𝝏𝒛𝒆−𝒊 𝒌𝒛

=−𝒊𝒌𝒆−𝒊 𝒌𝒛 ≠𝟎

𝒖𝒛. 𝒖𝑬 = 𝟎 → 𝒖𝒛. 𝒖𝑬 = 𝟎

Which means that 𝒄 = 𝟎:

𝒖𝑬 = 𝒂𝒖𝒙 + 𝒃𝒖𝒚
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The previous result, will allow us to write the electric field with its XY components:

෩𝑬 𝒓, 𝒕 = 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒂𝒖𝒙 + 𝒃𝒖𝒚

Now let’s use the second Maxwell equation: 𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕

𝛁 ∧ 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒂𝒖𝒙 + 𝒃𝒖𝒚 = −
𝝏 𝑩𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝑩

𝝏𝒕
= −𝒊𝝎 𝑩𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝑩

4. Uniform plane waves

III. Propagation of E.M Waves

Performing the curl on the left hand and simplifying similar terms will produce:

−𝒊𝒌𝑬 −𝒃𝒖𝒙 + 𝒂𝒖𝒚 = −𝒊𝝎𝑩𝒖𝑩 → 𝒖𝑩 =
𝒌𝑬

𝑩
−𝒃𝒖𝒙 + 𝒂𝒖𝒚

Consequently, it will be easy to verify that 𝒖𝑩 ⟂ 𝒖𝑬, which implies that 𝑬 𝒓, 𝒕 and 𝑩 𝒓, 𝒕 are

orthogonal.
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Therefore, the plane electromagnetic wave

propagating in the +z-direction, could be

represented by both electric and magnetic

fields lying on XY plane, with a practical

choice (𝒂 = 𝟏, 𝒃 = 𝟎):

෩𝑬 𝒓, 𝒕 = 𝑬𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝒙

෩𝑩 𝒓, 𝒕 = 𝑩𝟎 𝒆𝒊 𝝎𝒕−𝒌𝒛+𝝋𝟎 𝒖𝒚

Taking the real part of each phasor:

𝑬 𝒓, 𝒕 = 𝑬𝟎𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋𝟎 𝒖𝒙

𝑩 𝒓, 𝒕 = 𝑩𝟎𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋𝟎 𝒖𝒚 

4. Uniform plane waves

III. Propagation of E.M Waves

Thus, the plane E.M wave propagating in a

given direction, is represented by two

orthogonal E.M fields lying on the

perpendicular plan of the propagation

direction given by the wave vector 𝒌.

The vectors 𝑬, 𝑩 and 𝒌 form a direct trihedral.
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By considering now that both E.M fields are lying on XY-plane and oriented along 𝒖𝒙 and 𝒖𝒚,

respectively, the use of the second Maxwell equation will provide the following relation between 𝑬

and 𝑯 (or between 𝑬 and 𝑩), called the “intrinsic impedance” of the given medium of propagation:

−𝒊𝒌𝑬 = −𝒊𝝎𝝁𝑯 →
𝑬 𝑽/𝒎

𝑯 𝑨/𝒎
=

𝝁𝝎

𝒌
= 𝜼 Ω =

𝝁𝝎

𝝎 𝝁 𝜺′ − 𝒊𝜺′′
= 𝜼 𝒆𝒊𝜽 𝑯 =

𝑬

𝜼
=

𝑬

𝜼
𝒆−𝒊𝜽

5. Relation between E and H: intrinsic impedance

III. Propagation of E.M Waves

10min Test: In the case of free space,

where: 𝝁 = 𝝁𝟎, 𝜺 = 𝜺𝟎, 𝜺′′ = 𝟎, Calculate 𝜼𝟎.

𝝁𝟎 = 𝟒𝝅 × 𝟏𝟎−𝟕𝑺. 𝑰 ; 𝜺𝟎 = 𝟖. 𝟖𝟓 × 𝟏𝟎−𝟏𝟐𝑺. 𝑰
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By considering now that both E.M fields are lying on XY-plane and oriented along 𝒖𝒙 and 𝒖𝒚,

respectively, the use of the second Maxwell equation will provide the following relation between 𝑬

and 𝑯 (or between 𝑬 and 𝑩), called the “intrinsic impedance” of the given medium of propagation:

−𝒊𝒌𝑬 = −𝒊𝝎𝝁𝑯 →
𝑬 𝑽/𝒎

𝑯 𝑨/𝒎
=

𝝁𝝎

𝒌
= 𝜼 Ω =

𝝁𝝎

𝝎 𝝁 𝜺′ − 𝒊𝜺′′
= 𝜼 𝒆𝒊𝜽 𝑯 =

𝑬

𝜼
=

𝑬

𝜼
𝒆−𝒊𝜽

5. Relation between E and H: intrinsic impedance

III. Propagation of E.M Waves

The intrinsic impedance of free space:

𝒌 = 𝝎 𝝁𝜺 → 𝜼𝟎 =
𝝁𝟎𝝎

𝝎 𝝁𝟎𝜺𝟎
=

𝝁𝟎

𝜺𝟎

=
𝟒𝝅 × 𝟏𝟎−𝟕

𝟖. 𝟖𝟓 × 𝟏𝟎−𝟏𝟐
≅ 𝟑𝟕𝟕 Ω ≡ 𝟏𝟐𝟎𝝅 Ω

10min Test: In the case of free space,

where: 𝝁 = 𝝁𝟎, 𝜺 = 𝜺𝟎, 𝜺′′ = 𝟎, Calculate 𝜼𝟎.

𝝁𝟎 = 𝟒𝝅 × 𝟏𝟎−𝟕𝑺. 𝑰 ; 𝜺𝟎 = 𝟖. 𝟖𝟓 × 𝟏𝟎−𝟏𝟐𝑺. 𝑰
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We now extend our analytical treatment of the

uniform plane wave to propagation in a

dielectric of permittivity 𝜺 and permeability 𝝁.

The medium is assumed to be homogeneous

(having constant μ and 𝜺 with position) and

isotropic (in which μ and 𝜺 are invariant with

field orientation). The expression of the wave

number obtained before is:

𝒌 = 𝝎 𝝁𝜺 𝟏 − 𝒊 ൗ𝜺′′
𝜺 = 𝜶 + 𝒊𝜷

With: 𝜺′′ =
𝝈

𝝎

6. Wave propagation in dielectrics

III. Propagation of E.M Waves

Resolving this equation, one can find 𝜶 and 𝜷:

𝜶 = 𝝎
𝝁𝜺

𝟐
𝟏 +

𝝈

𝜺𝝎

𝟐

+ 𝟏

𝟏/𝟐

𝜷 = 𝝎
𝝁𝜺

𝟐
𝟏 +

𝝈

𝜺𝝎

𝟐

− 𝟏

𝟏/𝟐

Back to the general form of E.M fields and

replacing with complex form of wave number:

෩𝑬 𝒓, 𝒕 = 𝑬𝟎 𝒆𝒊 𝝎𝒕− 𝜶+𝒊𝜷 𝒌𝒛+𝝋𝟎 𝒖𝒙

෩𝑩 𝒓, 𝒕 = 𝑩𝟎 𝒆𝒊 𝝎𝒕− 𝜶+𝒊𝜷 𝒛+𝝋𝟎 𝒖𝒚
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The E.M phasors could be separated into

complex and real exponential functions:

෩𝑬 𝒓, 𝒕 = 𝑬𝟎 𝒆−𝜷𝒛𝒆𝒊 𝝎𝒕−𝜶𝒛+𝝋𝟎 𝒖𝒙

෩𝑩 𝒓, 𝒕 = 𝑩𝟎 𝒆−𝜷𝒛𝒆𝒊 𝝎𝒕−𝜶𝒛+𝝋𝟎 𝒖𝒚

Now, taking the real parts, physical E.M fields

are written as:

𝑬 𝒓, 𝒕 = 𝑬𝟎 𝒆−𝜷𝒛𝒄𝒐𝒔 𝝎𝒕 − 𝜶𝒛 + 𝝋𝟎 𝒖𝒙

𝑩 𝒓, 𝒕 = 𝑩𝟎 𝒆−𝜷𝒛𝒄𝒐𝒔 𝝎𝒕 − 𝜶𝒛 + 𝝋𝟎 𝒖𝒚

This indicates the phase wave velocity:

𝒗𝒑 =
𝝎

𝜶
→ λ =

𝟐𝝅

𝜶

6. Wave propagation in dielectrics

III. Propagation of E.M Waves

For a good dielectric medium 𝝈 ≪ , one can

assume with good approximation that:
𝜺′′

𝜺′
≪ 𝟏,

which implies using limited development:

𝜶 ≅ 𝝎 𝝁𝜺;  𝜷 =
𝝈

𝟐

𝝁

𝜺

𝒗𝒑 ≅
𝝎

𝝎 𝝁𝜺
≡

𝟏

𝝁𝜺
→ λ =

𝟐𝝅

𝝎 𝝁𝜺

The intrinsic impedance could be obtained :

𝜼 =
𝝁𝝎

𝒌
=

𝝁𝝎

𝝎 𝝁 𝜺′ − 𝒊𝜺′′
=

𝝁

𝜺′

𝟏

𝟏 − 𝒊 ൗ𝜺′′
𝜺′

With approach of small numbers expansion:

𝜼 ≅
𝝁

𝜺′
𝟏 + 𝒊

𝜺′′

𝟐𝜺′
≡

𝝁

𝜺′
𝟏 + 𝒊

𝝈

𝟐𝝎𝜺
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In this case 𝝈 ≫, we can assume with a good

approximation that :
𝜺′′

𝜺′
=

𝝈

𝜺𝝎
≫ 𝟏 , the wave

number :

𝒌 = 𝝁𝜺𝝎𝟐 − 𝒊𝝎𝝁𝝈 = 𝝎 𝝁𝜺′ 𝟏 − 𝒊
𝜺′′

𝜺′

Could be rewritten with good approximation:

𝒌 ≅ 𝝎 𝝁𝜺 −𝒊
𝝈

𝜺𝝎
≡ 𝝁𝝈𝝎 −𝒊 =

𝝁𝝈𝝎

𝟐
𝟏 − 𝒊

By identification: 𝒌 = 𝜶 + 𝒊𝜷:

𝜶 = −𝜷 =
𝝁𝝈𝝎

𝟐

7. Wave propagation in conductors

III. Propagation of E.M Waves

Similarly, taking the real parts, physical E.M

fields are written as:

𝑬 𝒓, 𝒕 = 𝑬𝟎 𝒆−𝜷𝒛𝒄𝒐𝒔 𝝎𝒕 − 𝜶𝒛 + 𝝋𝟎 𝒖𝒙

𝑩 𝒓, 𝒕 = 𝑩𝟎 𝒆−𝜷𝒛𝒄𝒐𝒔 𝝎𝒕 − 𝜶𝒛 + 𝝋𝟎 𝒖𝒚

The intrinsic impedance in the case could be

obtained in similar way:

𝜼 =
𝝁𝝎

𝒌
=

𝝁𝝎

𝜶 + 𝒊𝜷
=

𝝁𝝎

𝝈

𝟐

𝟏 − 𝒊
=

𝝁𝝎

𝟐𝝈
𝟏 + 𝒊



=

Planar E.M. waves

8. Wave attenuation and skin depth

III. Propagation of E.M Waves

𝜷 = 𝟏/𝟓𝟎

𝐸0. 𝑒−1

−𝐸0. 𝑒−1

𝒆−𝟏 = 𝟎. 𝟑𝟔𝟕
𝒛𝟎 =

𝟏

𝜷
= 𝟐𝟓

𝜷 = 𝟏/𝟐𝟓

𝑬 𝒓, 𝒕 = 𝑬𝟎 𝒆−𝜷𝒛𝒄𝒐𝒔 𝝎𝒕 − 𝜶𝒛 + 𝝋𝟎 𝒖𝒙
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8. Wave attenuation and skin depth

III. Propagation of E.M Waves

𝐸0. 𝑒−1

−𝐸0. 𝑒−1

𝒆−𝟐 = 𝟎. 𝟏𝟑𝟓

𝜷 = 𝟏/𝟏𝟎

𝐸0. 𝑒−2

−𝐸0. 𝑒−2

𝒙 =
𝟏

𝜷
𝒙 =

𝟐

𝜷

It is clear that the physical signification of 𝜷

is the attenuation of E.M fields strength, by

a coefficient of Τ𝟏
𝒆 = 𝟎. 𝟏𝟑𝟓 each specific

distance:

𝜹 =
𝟏

𝜷

Called “Skin depth” or “penetration depth”.

In the specific case of good conductors:

𝜹 𝒎 =
𝟏

𝜷
=

𝟐

𝝁𝝈𝝎
=

𝟏

𝝅𝝁𝝈𝒇

To measure the attenuation, the argument 𝜷𝒛

of attenuated exponential 𝒆−𝜷𝒛 is called “Neper”

and 𝜷 is measured by 𝑵𝒑/𝒎 .
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In order to find the power flow associated with

an electromagnetic wave, it is necessary to

develop a power theorem for the

electromagnetic field known as the Poynting

theorem. It was originally postulated in 1884

by an English physicist, John H. Poynting.

The development begins with the fourth

Maxwell’s equation, in which we assume that

the medium may be conductive:

𝛁 ∧ 𝑯 = Ԧ𝑱 +
𝝏𝑫

𝝏𝒕

8. Poynting’s theorem and wave power

III. Propagation of E.M Waves

Next, we take the scalar product of both sides

with 𝑬:

𝑬. 𝛁 ∧ 𝑯 = 𝑬. Ԧ𝑱 + 𝑬.
𝝏𝑫

𝝏𝒕

Using the following vectors identity (Chap01):

𝛁. 𝑬 ⋏ 𝑯 = 𝑯. 𝛁 ⋏ 𝑬 − 𝑬. 𝛁 ⋏ 𝑯

Using the latter equation in the left side of IV

Maxwell’s equation:

𝑯. 𝛁 ∧ 𝑬  − 𝛁. 𝑬 ∧ 𝑯 = 𝑬. Ԧ𝑱 + 𝑬.
𝝏𝑫

𝝏𝒕

𝑯. −
𝝏𝑩

𝝏𝒕
 − 𝛁. 𝑬 ∧ 𝑯 = 𝑬. Ԧ𝑱 + 𝑬.

𝝏𝑫

𝝏𝒕



Planar E.M. waves

Make few adjustments about derivatives, since we know that: 𝑫 = 𝜺𝑬; 𝑩 = 𝝁𝑯,

we can write:

𝑬.
𝝏𝑫

𝝏𝒕
= 𝜺𝑬.

𝝏𝑬

𝝏𝒕
=

𝝏

𝝏𝒕

𝟏

𝟐
𝑫. 𝑬

𝑯.
𝝏𝑩

𝝏𝒕
= 𝝁𝑯.

𝝏𝑯

𝝏𝒕
=

𝝏

𝝏𝒕

𝟏

𝟐
𝑩. 𝑯

We get:

−𝛁. 𝑬 ∧ 𝑯 =
𝝏

𝝏𝒕

𝟏

𝟐
𝑩. 𝑯 +

𝝏

𝝏𝒕

𝟏

𝟐
𝑫. 𝑬 + 𝑬. Ԧ𝑱

Integrated over given volume 𝑽:

− න
𝑽

𝛁. 𝑬 ∧ 𝑯 . 𝒅𝒗 = න
𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑩. 𝑯 . 𝒅𝒗 + න

𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑫. 𝑬 + න

𝑽

𝑬. Ԧ𝑱 𝒅𝒗

8. Poynting’s theorem and wave power

III. Propagation of E.M Waves



Planar E.M. waves

The new form of Poynting’s equation:

− ර
𝑺

𝑬 ∧ 𝑯 . 𝒅𝑺

𝒕𝒐𝒕𝒂𝒍 𝑬.𝑴 𝒑𝒐𝒘𝒆𝒓 
𝒇𝒍𝒐𝒘𝒊𝒏𝒈 𝒐𝒖𝒕 𝑽 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝑺

= න
𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑩. 𝑯 . 𝒅𝒗

𝒕𝒐𝒕𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅
𝒊𝒏 𝒎𝒂𝒈𝒏𝒆𝒕𝒊𝒄 𝒇𝒊𝒆𝒍𝒅

+ න
𝑽

𝝏

𝝏𝒕

𝟏

𝟐
𝑫. 𝑬

𝑻𝒐𝒕𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅
𝒊𝒏 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄 𝒇𝒊𝒆𝒍𝒅

+ න
𝑽

𝑬. Ԧ𝑱 𝒅𝒗

𝑶𝒉𝒎𝒊𝒄 𝒑𝒐𝒘𝒆𝒓 
𝒅𝒊𝒔𝒔𝒊𝒑𝒂𝒕𝒆𝒅 𝒐𝒗𝒆𝒓 𝑽

This theorem gives the time rates of increase of energy stored within the volume V, or the

instantaneous power going to increase the stored energy.

8. Poynting’s theorem and wave power

III. Propagation of E.M Waves

The cross product of 𝑬 and 𝑯 define the Poynting’s

vector, indicating the power density flowing in the

direction of 𝓟 at a given point. (homonym “Poynting”

and “pointing” is accidentally “True”)

𝓟 𝑾. 𝒎−𝟐 = 𝑬 ∧ 𝑯

The measured value of Poynting value is an average

value over a specific time (period) and could be

obtained using general phasors:

𝓟 ≡ ഥ𝓟 =
𝟏

𝟐
ℜℯ ෩𝑬 ∧ ෩𝑯∗ ∝

𝟏

𝟐 𝜼
𝑬𝟎

𝟐𝒆−𝟐𝜷𝒛

With: ෩𝑯∗ is the conjugate of ෩𝑯



Planar E.M. waves

Let’s consider a non attenuated plane E.M

wave given by its electric and magnetic fields

lying on the plane corresponding to the wave

front, normal to the incidence direction

(using space phasors):

𝑬 𝐳, 𝒕 = ෩𝑬𝟎 . 𝒆𝝎𝒕; 𝑯 𝒛, 𝒕 = ෩𝑯𝟎 . 𝒆𝒊𝝎𝒕

9. Polarization of E.M wave

III. Propagation of E.M Waves

In general, the electric field (and magnetic

field) did not keep the same orientation on

the wave plane, and it could vary with time

and traces a curve by the tip of the field vector

on the plane.

In such situation, the electric field (similarly

the magnetic field), could be divided into two

components on the wave front plane (x-y in

this case) propagating in +z-direction, :

෩𝑬 z = ෩𝑬𝒙 z 𝒖𝑥 + ෩𝑬𝒚 z 𝒖𝑦

And we can set:

෩𝑬𝒙 z = 𝐸𝑥0𝑒−𝑖𝑘𝑧; ෩𝑬𝒚 z = 𝐸𝑦0𝑒−𝑖𝑘𝑧



Planar E.M. waves

Both initial amplitudes 𝐸𝑥0 and 𝐸𝑦0 are in general complex numbers and could be written in

exponential form:

𝑬𝒙𝟎 = 𝒂𝒙𝒆𝒊𝝋𝒙; 𝑬𝒚𝟎 = 𝒂𝒚𝒆𝒊𝝋𝒚

With: 𝒂𝒙 = 𝑬𝒙𝟎 > 𝟎; 𝒂𝒚 = 𝑬𝒚𝟎 > 𝟎

Consequently, we can rewrite ෩𝑬 𝒛 :

෩𝑬 𝒛 = 𝒂𝒙𝒆−𝒊𝒌𝒛𝒆𝒊𝝋𝒙𝒖𝒙 + 𝒂𝒚𝒆−𝒊𝒌𝒛𝒆𝒊𝝋𝒚𝒖𝒚 → ෩𝑬 𝒛 = 𝒆−𝒊𝒌𝒛𝒆𝒊𝝋𝒙 𝒂𝒙𝒖𝒙 + 𝒂𝒚𝒆𝒊𝝋𝒖𝒚

With: 𝝋 = 𝝋𝒚 − 𝝋𝒙 called the phase difference between ෩𝑬𝒚 𝑧 and ෩𝑬𝒙 𝑧

9. Polarization of E.M wave

III. Propagation of E.M Waves

For the sake of simplicity, we can choose to take 𝝋𝒙 = 𝟎 → 𝝋 = 𝝋𝒚: ෩𝑬 𝒛 = 𝒆−𝒊𝒌𝒛 𝒂𝒙𝒖𝒙 + 𝒂𝒚𝒆𝒊𝝋𝒖𝒚

Taking the real part of the phasor, we will get the instantaneous electric field:

𝑬 𝒛, 𝒕 = 𝒂𝒙. 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 𝒖𝒙 + 𝒂𝒚. 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋 𝒖𝒙



Planar E.M. waves

The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

9. Polarization of E.M wave

III. Propagation of E.M Waves

a. Linear polarization 𝝋 = 𝟎 𝒐𝒓 𝝅:

For 𝝋 = 𝟎 (in-phase):

𝑬 𝒛, 𝒕 = 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋 𝒂𝒙. 𝒖𝒙 + 𝒂𝒚. 𝒖𝒙

𝑬(𝒛, 𝒕) = 𝒂𝒙
𝟐 + 𝒂𝒚

𝟐 𝟏/𝟐
𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝒂𝒚

𝒂𝒙

The amplitude is indeed function of z and t,
whereas the direction is not (fixed direction).



Planar E.M. waves

The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

9. Polarization of E.M wave

III. Propagation of E.M Waves

a. Linear polarization 𝝋 = 𝟎 𝒐𝒓 𝝅:

For 𝝋 = 𝝅 (out-phase):

𝑬 𝒛, 𝒕 = 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 + 𝝋 𝒂𝒙. 𝒖𝒙 − 𝒂𝒚. 𝒖𝒙

𝑬(𝒛, 𝒕) = 𝒂𝒙
𝟐 + 𝒂𝒚

𝟐 𝟏/𝟐
𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
−𝒂𝒚

𝒂𝒙

The amplitude is indeed function of z and t,
whereas the direction is not (fixed direction).



Planar E.M. waves

The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

9. Polarization of E.M wave

III. Propagation of E.M Waves

b. Circular polarization 𝝋 = ± Τ𝝅
𝟐 , 𝒂𝒙 = 𝒂𝒚 = 𝒂

For 𝝋 = Τ𝝅
𝟐 (Left Circular Polarization):

𝑬 𝒛, 𝒕 = 𝒂 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 𝒖𝒙 − 𝒔𝒊𝒏 𝝎𝒕 − 𝒌𝒛 𝒖𝒙

𝑬 𝒛, 𝒕 = 𝒂

𝝍 = 𝒕𝒂𝒏−𝟏
−𝒂. 𝒔𝒊𝒏 𝝎𝒕 − 𝒌𝒛

𝒂. 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛
= − 𝝎𝒕 − 𝒌𝒛

The direction is tracing a circular movement

in counter-clockwise direction.



Planar E.M. waves

The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

9. Polarization of E.M wave

III. Propagation of E.M Waves

b. Circular polarization 𝝋 = ± Τ𝝅
𝟐 , 𝒂𝒙 = 𝒂𝒚 = 𝒂

For 𝝋 = − Τ𝝅
𝟐 (Right Circular Polarization):

𝑬 𝒛, 𝒕 = 𝒂 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛 𝒖𝒙 + 𝒔𝒊𝒏 𝝎𝒕 − 𝒌𝒛 𝒖𝒙

𝑬 𝒛, 𝒕 = 𝒂

𝝍 = 𝒕𝒂𝒏−𝟏
𝒂. 𝒔𝒊𝒏 𝝎𝒕 − 𝒌𝒛

𝒂. 𝒄𝒐𝒔 𝝎𝒕 − 𝒌𝒛
= 𝝎𝒕 − 𝒌𝒛

The direction is tracing a circular movement

in counter-clockwise direction.



Planar E.M. waves

The specific cases of the E.M wave polarization

could be discussed upon the values of phase

difference 𝝋, by analyzing the amplitude of

𝑬 𝒛, 𝒕 and its direction:

The amplitude is given by:

𝑬(𝒛, 𝒕) = 𝑬𝒙
𝟐 𝒛, 𝒕 + 𝑬𝒚

𝟐 𝒛, 𝒕
𝟏/𝟐

= 𝒂𝒙
𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝒂𝒚

𝟐𝒄𝒐𝒔𝟐 𝝎𝒕 − 𝒌𝒛 + 𝝋
𝟏/𝟐

The direction is dictated by the inclination angle:

𝝍(𝒛, 𝒕) = 𝒕𝒂𝒏−𝟏
𝑬𝒚(𝒛, 𝒕)

𝑬𝒙(𝒛, 𝒕)

9. Polarization of E.M wave

III. Propagation of E.M Waves

b. Elliptical polarization

𝟎 < 𝝋 < ൗ𝝅
𝟐 , 𝒂𝒙 ≠ 𝒂𝒚



Planar E.M. wavesIII. Propagation of E.M Waves



When a travelling wave reaches an interface

between two different regions, it is partly

reflected and partly transmitted, with the

magnitude of the two parts determined by the

constants of the two regions:

Incident wave:

෩𝑬𝒊 𝒛 = 𝑬𝟎
𝒊 𝒆−𝒊𝒌𝟏𝒛𝒖𝒙;

෩𝑯𝒊 𝒛 =
𝟏

η𝟏
𝒖𝒛 ∧ ෩𝑬𝒊 =

𝑬𝟎
𝒊

η𝟏
𝒆−𝒊𝒌𝟏𝒛𝒖𝒚

Reflected wave:

෩𝑬𝒓 𝒛 = 𝑬𝟎
𝒓𝒆𝒊𝒌𝟏𝒛𝒖𝒙

෩𝑯𝒓 𝒛 =
𝟏

η𝟏
−𝒖𝒛 ∧ ෩𝑬𝒓 = −

𝑬𝟎
𝒓

η𝟏
𝒆𝒊𝒌𝟏𝒛𝒖𝒚

1. Normal incidence

III. Propagation of E.M Waves Reflection and refraction 

Transmitted wave:

෩𝑬𝒕 𝒛 = 𝑬𝟎
𝒕 𝒆−𝒊𝒌𝟐𝒛𝒖𝒙

෩𝑯𝒕 𝒛 =
𝟏

η𝟐
𝒖𝒛 ∧ ෩𝑬𝒕 =

𝑬𝟎
𝒕

η𝟐
𝒆−𝒊𝒌𝟐𝒛𝒖𝒚



The total electric field ෩𝑬𝟏(𝒛) in medium 1 is the

sum of the electric fields of the incident and

reflected waves, and a similar statement

applies to the magnetic field ෩𝑯𝟏(𝒛) . Hence,

෩𝑬𝟏 𝒛 = ෩𝑬𝒊 𝒛 + ෩𝑬𝒓 𝒛 = 𝑬𝟎
𝒊 𝒆−𝒊𝒌𝟏𝒛 + 𝑬𝟎

𝒓𝒆𝒊𝒌𝟏𝒛 𝒖𝒚

෩𝑯𝟏 𝒛 = ෩𝑯𝒊 𝒛 + ෩𝑯𝒓 𝒛 =
𝑬𝟎

𝒊 𝒆−𝒊𝒌𝟏𝒛 − 𝑬𝟎
𝒓𝒆𝒊𝒌𝟏𝒛

η𝟏
𝒖𝒚

With only the transmitted wave present in

medium 2, the total fields are

෩𝑬𝟐 𝒛 = ෩𝑬𝒕 𝒛 = 𝑬𝟎
𝒕 𝒆−𝒊𝒌𝟐𝒛𝒖𝒙

෩𝑯𝟏 𝒛 = ෩𝑯𝒕 𝒛 =
𝑬𝟎

𝒕

η𝟐
𝒆−𝒊𝒌𝟐𝒛𝒖𝒚

1. Normal incidence

III. Propagation of E.M Waves Reflection and refraction 

Assuming normal incidence, At the boundary

( 𝒛 = 𝟎 ), the tangential components of the

electric and magnetic fields are continuous.

Hence,

෩𝑬𝟏 𝟎 = ෩𝑬𝟐 𝟎 → 𝑬𝟎
𝒊 + 𝑬𝟎

𝒓 = 𝑬𝟎
𝒕

෩𝑯𝟏 𝟎 = ෩𝑯𝟐 𝟎 →
𝑬𝟎

𝒊

η𝟏
−

𝑬𝟎
𝒓

η𝟏
=

𝑬𝟎
𝒕

η𝟐

Solving these equations for 𝑬𝟎
𝒓and 𝑬𝟎

𝒕 in terms of

𝑬𝟎
𝒊  gives:

𝑬𝟎
𝒓 =

η𝟐 − η𝟏

η𝟐 + η𝟏
𝑬𝟎

𝒊 = 𝜞𝑬𝟎
𝒊

𝑬𝟎
𝒕 =

𝟐η𝟐

η𝟐 + η𝟏
𝑬𝟎

𝒊 = 𝝉𝑬𝟎
𝒊

The quantities 𝜞 and 𝝉 are called the reflection
and transmission coefficients 𝝉 = 𝟏 + 𝜞



A wave of arbitrary polarization may be described as the

superposition of two orthogonally polarized waves: one

with its electric field parallel to the plane of incidence

(parallel polarization) and the other with its electric field

perpendicular to the plane of incidence (perpendicular

polarization).

The perpendicular polarization where the plane of

incidence is coincident with the 𝒙– 𝒛 plane (𝒚 = 𝟎), is

given with E perpendicular to the plane of incidence and

it also called transverse electric (TE) polarization because

E is perpendicular to the plane of incidence.

2. Oblique incidence

III. Propagation of E.M Waves Reflection and refraction 



When E is parallel to the plane of incidence, the

polarization is called transverse magnetic (TM)

polarization because in that case it is the magnetic field

that is perpendicular to the plane of incidence.

2. Oblique incidence

III. Propagation of E.M Waves Reflection and refraction 

For the general case of a wave with an arbitrary polarization, it

is common practice to decompose the incident wave 𝑬𝒊, 𝑯𝒊 into

a perpendicularly polarized component 𝑬⟂
𝒊 , 𝑯⟂

𝒊 and a parallel

polarized component 𝑬‖
𝒊 , 𝑯‖

𝒊 .

Similar process is used to determine both reflected 𝑬𝒓, 𝑯𝒓 and

transmitted 𝑬𝒕, 𝑯𝒕 waves.



A. Perpendicular polarization

• Incidence angle 𝜽𝒊

• Reflection angle 𝜽𝒓

• Refraction angle 𝜽𝒕

2. Oblique incidence

III. Propagation of E.M Waves Reflection and refraction 



A. Perpendicular polarization

In this case, we will be interested

in perpendicular components:

෩𝑬⟂
𝒊 𝒙, 𝒚 = 𝑬⟂𝟎

𝒊 𝒆−𝒊𝒌𝟏𝒙𝒊𝒖𝒚

෩𝑯⟂
𝒊 𝒙, 𝒚 =

𝑬⟂𝟎
𝒊

𝜼𝟏
𝒆−𝒊𝒌𝟏𝒙𝒊𝒖𝒊

With:
𝒙𝒊 = 𝒙. 𝒔𝒊𝒏𝜽𝒊 + 𝒛. 𝒄𝒐𝒔𝜽𝒊

𝒖𝒊 = −𝒖𝒙. 𝒄𝒐𝒔𝜽𝒊 + 𝒖𝒚. 𝒔𝒊𝒏𝜽𝒊

2. Oblique incidence

III. Propagation of E.M Waves Reflection and refraction 

The incident wave :

෩𝑬⟂
𝒊 𝒙, 𝒚 = 𝑬⟂𝟎

𝒊 𝒆−𝒊𝒌𝟏 𝒙.𝒔𝒊𝒏𝜽𝒊+𝒛.𝒄𝒐𝒔𝜽𝒊 𝒖𝒚

෩𝑯⟂
𝒊 𝒙, 𝒚 =

𝑬⟂𝟎
𝒊

𝜼𝟏
𝒆−𝒊𝒌𝟏 𝒙.𝒔𝒊𝒏𝜽𝒊+𝒛.𝒄𝒐𝒔𝜽𝒊 −𝒖𝒙. 𝒄𝒐𝒔𝜽𝒊 + 𝒖𝒚. 𝒔𝒊𝒏𝜽𝒊

The reflected wave :

෩𝑬⟂
𝒓 𝒙, 𝒚 = 𝑬⟂𝟎

𝒓 𝒆−𝒊𝒌𝟏𝒙𝒓𝒖𝒚 = 𝑬⟂𝟎
𝒓 𝒆−𝒊𝒌𝟏 𝒙.𝒔𝒊𝒏𝜽𝒓−𝒛.𝒄𝒐𝒔𝜽𝒓 𝒖𝒚

෩𝑯⟂
𝒓 𝒙, 𝒚 =

𝑬⟂𝟎
𝒓

𝜼𝟏
𝒆−𝒊𝒌𝟏 𝒙.𝒔𝒊𝒏𝜽𝒊−𝒛.𝒄𝒐𝒔𝜽𝒊 𝒖𝒙. 𝒄𝒐𝒔𝜽𝒊 + 𝒖𝒚. 𝒔𝒊𝒏𝜽𝒊

The transmitted wave :

෩𝑬⟂
𝒕 𝒙, 𝒚 = 𝑬⟂𝟎

𝒕 𝒆−𝒊𝒌𝟐𝒙𝒕𝒖𝒚 = 𝑬⟂𝟎
𝒕 𝒆−𝒊𝒌𝟐 𝒙.𝒔𝒊𝒏𝜽𝒕+𝒛.𝒄𝒐𝒔𝜽𝒕 𝒖𝒚

෩𝑯⟂
𝒕 𝒙, 𝒚 =

𝑬⟂𝟎
𝒕

𝜼𝟐
𝒆−𝒊𝒌𝟐 𝒙.𝒔𝒊𝒏𝜽𝒊+𝒛.𝒄𝒐𝒔𝜽𝒊 −𝒖𝒙. 𝒄𝒐𝒔𝜽𝒊 + 𝒖𝒚. 𝒔𝒊𝒏𝜽𝒊

The following interface conditions are applied:

ቚ෩𝑬⟂𝒚
𝒊 + ෩𝑬⟂𝒚

𝒓

𝒛=𝟎
= ቚ෩𝑬⟂𝒚

𝒕

𝒛=𝟎

ቚ෩𝑯⟂𝒙
𝒊 + ෩𝑯⟂𝒙

𝒓

𝒛=𝟎
= ቚ෩𝑯⟂𝒙

𝒕

𝒛=𝟎



A. Perpendicular polarization

ቚ෩𝑬⟂𝒚
𝒊 + ෩𝑬⟂𝒚

𝒓

𝒛=𝟎
= ቚ෩𝑬⟂𝒚

𝒕

𝒛=𝟎
→ 𝑬⟂𝟎

𝒊 𝒆−𝒊𝒌𝟏 𝒙.𝒔𝒊𝒏𝜽𝒊 + 𝑬⟂𝟎
𝒓 𝒆−𝒊𝒌𝟏 𝒙.𝒔𝒊𝒏𝜽𝒓 = 𝑬⟂𝟎

𝒕 𝒆−𝒊𝒌𝟐 𝒙.𝒔𝒊𝒏𝜽𝒕

ቚ෩𝑯⟂𝒙
𝒊 + ෩𝑯⟂𝒙

𝒓

𝒛=𝟎
= ቚ෩𝑯⟂𝒙

𝒕

𝒛=𝟎
→ −𝒄𝒐𝒔𝜽𝒊

𝑬⟂𝟎
𝒊

𝜼𝟏
𝒆−𝒊𝒌𝟏 𝒙.𝒔𝒊𝒏𝜽𝒊 + 𝒄𝒐𝒔𝜽𝒓

𝑬⟂𝟎
𝒓

𝜼𝟏
𝒆−𝒊𝒌𝟏 𝒙.𝒔𝒊𝒏𝜽𝒓 = 𝒄𝒐𝒔𝜽𝒕

𝑬⟂𝟎
𝒕

𝜼𝟐
𝒆−𝒊𝒌𝟐 𝒙.𝒔𝒊𝒏𝜽𝒕

To satisfy the both equations for all possible values of 𝒙 (i.e., all along the boundary), it follows that

the arguments of all three exponentials must be equal. That is,

𝒌𝟏 𝒙. 𝒔𝒊𝒏𝜽𝒊 = 𝒌𝟏 𝒙. 𝒔𝒊𝒏𝜽𝒓 = 𝒌𝟐 𝒙. 𝒔𝒊𝒏𝜽𝒕 𝒌𝟏𝒔𝒊𝒏𝜽𝒊 = 𝒌𝟏𝒔𝒊𝒏𝜽𝒓 = 𝒌𝟐𝒔𝒊𝒏𝜽𝒕

Which is known as the phase-matching condition.

The first equality leads to the Snell’s law of reflection, while the second equality leads to the Snell’s

law of refraction:

𝜽𝒊 = 𝜽𝒓;  
𝒔𝒊𝒏𝜽𝒕

𝒔𝒊𝒏𝜽𝒊
=

𝒌𝟏

𝒌𝟐
=

𝝎 𝝁𝟏𝜺𝟏

𝝎 𝝁𝟐𝜺𝟐
=

𝒏𝟏

𝒏𝟐

2. Oblique incidence

III. Propagation of E.M Waves Reflection and refraction 



A. Perpendicular polarization

Using previous results, we get for both equations of E and H :

ቚ෩𝑬⟂𝒚
𝒊 + ෩𝑬⟂𝒚

𝒓

𝒛=𝟎
= ቚ෩𝑬⟂𝒚

𝒕

𝒛=𝟎
→ 𝑬⟂𝟎

𝒊 + 𝑬⟂𝟎
𝒓 = 𝑬⟂𝟎

𝒕

ቚ෩𝑯⟂𝒙
𝒊 + ෩𝑯⟂𝒙

𝒓

𝒛=𝟎
= ቚ෩𝑯⟂𝒙

𝒕

𝒛=𝟎
→ 𝒄𝒐𝒔𝜽𝒊 −

𝑬⟂𝟎
𝒊

𝜼𝟏
+

𝑬⟂𝟎
𝒓

𝜼𝟏
= 𝒄𝒐𝒔𝜽𝒕

𝑬⟂𝟎
𝒕

𝜼𝟐

2. Oblique incidence

III. Propagation of E.M Waves Reflection and refraction 

These two equations can be solved simultaneously to yield the

following expressions for the reflection and transmission coefficients

in the perpendicular polarization case:

𝜞⟂ =
𝑬⟂𝟎

𝒓

𝑬⟂𝟎
𝒊 =

η𝟐𝒄𝒐𝒔𝜽𝒊 − η𝟏𝒄𝒐𝒔𝜽𝒕

η𝟐𝒄𝒐𝒔𝜽𝒊 + η𝟏𝒄𝒐𝒔𝜽𝒕

𝝉⟂ =
𝑬⟂𝟎

𝒕

𝑬⟂𝟎
𝒊 =

𝟐η𝟐𝒄𝒐𝒔𝜽𝒊

η𝟐𝒄𝒐𝒔𝜽𝒊 + η𝟏𝒄𝒐𝒔𝜽𝒕

These two coefficients are known

formally as the Fresnel reflection

and transmission coefficients for

perpendicular polarization and are

related by :

𝝉⟂ = 𝟏 + 𝜞⟂

If medium 2 is a perfect conductor

(𝜼𝟐 = 𝟎), we get 𝜞⟂ = −𝟏 and 𝝉⟂ =

𝟎, respectively, which means that the

incident wave is totally reflected by

the conducting medium.



Reflection and refraction III. Propagation of E.M Waves

B. Parallel polarization

In this case the same reasoning and development are

used for parallel polarization for all components of

incident, reflected and transmitted wave, to obtain

the Fresnel reflection and transmission coefficients

for parallel polarization:

𝜞‖ =
𝑬‖𝟎

𝒓

𝑬‖𝟎
𝒊

=
η𝟐𝒄𝒐𝒔𝜽𝒕 − η𝟏𝒄𝒐𝒔𝜽𝒊

η𝟐𝒄𝒐𝒔𝜽𝒕 + η𝟏𝒄𝒐𝒔𝜽𝒊

𝝉‖ =
𝑬‖𝟎

𝒕

𝑬‖𝟎
𝒊

=
𝟐η𝟐𝒄𝒐𝒔𝜽𝒊

η𝟐𝒄𝒐𝒔𝜽𝒕 + η𝟏𝒄𝒐𝒔𝜽𝒊

With the relation between both coefficients:

𝝉‖ = 𝟏 + 𝜞‖

𝒄𝒐𝒔𝜽𝒊

𝒄𝒐𝒔𝜽𝒕



Reflection and refraction III. Propagation of E.M Waves

3. Brewster Angle
The Brewster angle 𝜽𝑩 is defined as the incidence
angle 𝜽𝒊 at which the Fresnel reflection coefficient
𝜞 = 𝟎:
Perpendicular polarization:

𝜞⟂ = 𝟎 → η𝟐𝒄𝒐𝒔𝜽𝒊 = η𝟏𝒄𝒐𝒔𝜽𝒕

𝒔𝒊𝒏𝜽𝒊 = 𝒔𝒊𝒏𝜽⟂𝑩 =
𝟏 − Τ𝝁𝟏𝜺𝟐 𝝁𝟐𝜺𝟏

𝟏 − Τ𝝁𝟏 𝝁𝟐
𝟐

Parallel polarization:
𝜞‖ = 𝟎 → η𝟐𝒄𝒐𝒔𝜽𝒕 = η𝟏𝒄𝒐𝒔𝜽𝒊

𝒔𝒊𝒏𝜽𝒊 = 𝒔𝒊𝒏𝜽‖𝑩 =
𝟏 − Τ𝝁𝟐𝜺𝟏 𝝁𝟏𝜺𝟐

𝟏 − Τ𝜺𝟏 𝜺𝟐
𝟐
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