Advanced Jetpack Compose Concepts

Introduction

In the world of software development, architectural patterns play a vital role in creating robust and maintainable
applications. One such pattern that has gained significant popularity in recent years is MVVM, which stands
for Model-View-ViewModel. MVVM provides a structured approach to separate concerns and enhance the

overall development experience. In this article, we will delve into the core concepts of MVVM and explore how
it revolutionizes modern application development.

Get Data

ViewModel Process Data

Show Data

1. Understanding the MVVM Architecture:

The MVVM architecture divides an application into three distinct layers: the Model, the View, and the
ViewModel. The Model represents the data and business logic, the View handles the visual presentation to
the user, and the ViewModel acts as the intermediary between the Model and the View. This separation of
concerns promotes code reusability, testability, and maintainability.

2. The Model:

The Model encapsulates the data and business logic of an application. It represents the underlying data
sources, such as databases or web services, and performs operations such as data retrieval, manipulation, and
validation. By keeping the Model separate, we ensure that our application’s data layer remains decoupled from
the user interface, promoting flexibility and extensibility.

3. The View:

The View is responsible for displaying the user interface to the end user. It receives input from the user
and presents the data provided by the ViewModel. In the context of MVVM, the View should be kept as
lightweight as possible, with minimal logic. This approach allows for easier maintenance and enables designers
and developers to work simultaneously on different aspects of the application.

4. The ViewModel:

The ViewModel acts as the bridge between the Model and the View. It provides data and behavior to
the View, allowing it to bind directly to the ViewModel properties and commands. The ViewModel abstracts
the complexities of the Model and exposes a simplified interface to the View. By leveraging data binding and
commands, the ViewModel enables a reactive and event-driven development approach.

5. Data Binding and Commands:



One of the key strengths of MVVM lies in its robust data binding capabilities. Data binding establishes a
connection between the ViewModel and the View, ensuring that changes in one are automatically reflected in the
other. This eliminates the need for manual synchronization and simplifies the development process. Similarly,
commands enable the ViewModel to expose actions that can be invoked directly from the View, promoting a
seamless user experience.

6. Benefits of MVVM:

MVVM offers several benefits for modern application development. Firstly, it enhances code maintainability
by enforcing a clear separation of concerns. Developers can focus on their specific areas without stepping on
each other’s toes. Secondly, MVVM promotes code reusability, as the ViewModel can be easily shared across
multiple views. Thirdly, MVVM facilitates automated testing, as the business logic resides in the ViewModel,
which can be tested independently of the View.

MVVM Architecture in Compose

« Fepositories
DataSources
Business Logic
Metwork calls
Creating, storing and
changing app data

Model

Data i UseCasel
l Data altering invokes )
L 4 » |nteractors logic
» S30T (Single Source Of
: Truth)
ViewModel » UDF (Unidirectional Data
ciat ] Flow)
ale J « Only expose the State
Events

1_______

« User Interface

« Animations

« Context

» Buttons, Texts efc.

View

Integrating ViewModel with Compose:

1. Creating the ViewModel: Define a new class extending androidx.lifecycle.ViewModel.

2. Sharing the ViewModel: Pass the ViewModel instance to your composable function using the viewModel
parameter.

3. Accessing Data in Compose: Use vieuModel.data (replace "data” with your actual variable) to access
data exposed by the ViewModel.

4. Triggering UI Updates: When the ViewModel’s data changes, notify Compose by updating the State
or StateFlow object, causing recomposition and UI refresh.
Using State for Simple Data:

@Composable
fun MyScreen(viewModel: MyViewModel) {
val text = viewModel.buttonText.collectAsState() // Collect ‘buttonText‘ from StateFlow



Text (text = text.value, modifier = Modifier.padding(24.dp))

Button(onClick = { viewModel.changeButtonText() }) {
Text ("Change Text")
}

StateFlow for Dynamic Data Streams:

@Composable
fun MyScreen(viewModel: MyViewModel) {
val data = viewModel.liveData.collectAsState(initial = emptyList()) // Collect from LiveData

data.value.forEach { item ->
Text(text = item.name, modifier = Modifier.padding(8.dp))
3

Conclusion:

MVVM has emerged as a powerful architectural pattern for developing modern applications. By dividing
an application into distinct layers and leveraging data binding and commands, MVVM promotes code main-
tainability, reusability, and testability. Embracing MVVM enables developers to create robust and user-friendly
applications that can easily adapt to evolving requirements. So, whether you are starting a new project or
refactoring an existing one, consider adopting MVVM and witness the transformative power it brings to your
development workflow.

Remember, adopting MVVM requires a mindset shift and familiarity with the underlying concepts. As
you dive deeper into MVVM, explore various frameworks and libraries available for your chosen programming
language to leverage the full potential of this architecture. Happy coding!

State Management

State management is the process of tracking and updating the state of an application. In Jetpack Compose,
state is represented by a value that can change over time.

0.1 Examples of state in apps:

e User input: The user’s input can be considered state, as it can change over time. For example, the
user’s current location, the text they have entered into a text field, or the items they have selected in a
list are all examples of state that can be changed by the user.

e Data from the server: Data that is fetched from the server can also be considered state. For example,
the weather forecast, the latest news headlines, or the current stock prices are all examples of data that
can be fetched from the server and used to update the state of an app.

e The app’s configuration: The app’s configuration can also be considered state. For example, the app’s
current orientation, the user’s preferred language, or the device’s battery level can all affect the way an
app behaves.

e User Authentication State: Many apps require users to log in or sign up. The state of user authentica-
tion, such as whether a user is logged in or not, is an important piece of state in such apps. It determines
what screens or features are accessible to the user and affects the behavior of various Ul components.

e Network Request State: When an app communicates with a server or an API, it typically involves
network requests. The state of network requests includes whether a request is pending, completed, or
encountered an error. This state is crucial for displaying loading spinners, handling errors, or updating
UI components based on the result of the network request.

State is an important concept in Android app development. By understanding how state works, you
can create apps that are more responsive and user-friendly.



0.2 States Types in Compose

There are two main ways to manage state in Jetpack Compose:

e Stateful composables: Stateful composables are composables that manage their own state. This state
is typically stored within the composable function itself, using tools provided by Jetpack Compose, such
as remember or mutableStateOf. When the state changes, the composable recomposes itself, updating
the UI with the new state.

e Stateless composables: Stateless composables do not have their own state. Instead, they rely on the
state of their parents or siblings. When the state of a parent or sibling changes, the stateless composable
is recomposed and the new state is used to render the UL



	Examples of state in apps:
	States Types in Compose

