*Exercise 1:

Consider two conducting spheres of radii R_1 and R_2 $(R_1 > R_2)$ and charge densities σ_1 and σ_2 , connected by a long thin conducting wire as shown in **Fig.** 1.

1. Show that:

$$\frac{\sigma_1}{R_2} = \frac{\sigma_2}{R_1} \tag{1}$$

2. Provide a brief explanation of the derived expression.

Figure 1: Two metallic spheres connected by a long conducting wire

Exercise 2:

A hollow conducting sphere of radius R is divided into two unequal parts by a horizontal plane: the result is two spherical caps with a common base of a circle of radius $r = R \sin \alpha$. The isolated sphere is held at potential V > 0.

- 1. Determine the force exerted by the lower cap, assumed to be fixed, on the upper cap as a function of V and α .
- 2. From this, find the value of this force in the case of two hemispheres raised to a potential of V = 30 kV.

Figure 2: spherical caps

Exercise 3:

Determine the electric potentials of two concentric metallic spheres carrying charges Q_1 and Q_2 and radii R_1 and R_2 , respectively, where $R_1 > R_2$.

Figure 3: Concentric metallic Spheres

*Exercise 4:

Calculate the capacitances of the following conductors with different geometric shapes:

- 1. Conductor formed by two conducting plates of width ℓ , length L, and separated by a distance d.
- 2. Conductor formed by two coaxial conducting cylinders of length ℓ and radii R_1 and R_2 ($R_2 > R_1$). Consider the case where ($R_2 \approx R_1$).
- 3. Conductor formed by two concentric conducting spheres of radii R_1 and R_2 ($R_2 > R_1$). Consider the case where ($R_2 \gg R_1$) and ($R_2 \approx R_1$).

Exercice 5:

Consider a conductor A completely enclosing a conductor B of charge Q_B .

- 1. Calculate the internal charge of conductor A.
- 2. Calculate the external charge Q_A^{ext} in the following two charges:

- (a) Conductor A is isolated and initially neutral.
- (b) Conductor A carries an initial charge q.

Figure 4: Two conductors in complete influence