

Tutorials. Nº. 2: Work, heat and internal energy

Exercise 01 :

- 1. Define the work of a force and show that the product $P\Delta V$ has the dimension of work.
- 2. Give the dimensions (units) in the International System (SI) of heat and absolute temperature T. Deduce the relationship between T and the temperature θ (°C).
- 3. Give the expressions for the elementary heat in terms of the state variables (T, V), (T, P), and (P, V).
- 4. Can heat be added to a system without changing its temperature?
- 5. Can the temperature of a system be changed without adding heat to it? Justify your answer.

Exercise 02 :

The initial state of a mole of ideal gas is characterized by : $P_0= 2.10^5 Pa$, $V_0= 14$ litres.

The following reversible transformations are successively applied to this gas:

An isobaric expansion that doubles its volume, transformation: $(0 \rightarrow 1)$.

An isothermal compression that brings it back to its initial volume, transformation: $(1\rightarrow 2)$.

An isochoric cooling that brings it back to its initial state, transformation: $(2\rightarrow 0)$.

- 1. Represent the course of this cycle of transformations in the diagram (P on the y-axis, V on the x-axis). Use an arbitrary scale.
- 2. At what temperature does the isothermal compression take place? Deduce the maximum pressure reached.

3. Calculate the works W_{01} , W_{12} , W_{20} and the amounts of heat Q_{01} , Q_{12} and Q_{20} exchanged by the system during the cycle, as a function of P_0 , V_0 , and

 $\gamma = \frac{c_P}{c_V} = 1.4$ (γ assumed constant in the temperature range studied).

4. Verify that $\Delta U = 0$ for the cycle.

Exercise 03 :

A container closed by a movable piston contains n = 0.5 mole of an ideal gas, initially in a state A where its volume is $V_A = 5$ liters and where its temperature is $T_A = 287$ K. This gas is carried, reversibly to a state B where its volume is V_B = 20 liters and its temperature is T_B = 350K. The ratio of heat capacities of this gas is: $\gamma = 1.4$.

We give R = 8.32 J/mole.K. The transition from state A to state B takes place along two different paths:

- 1stpath: isochoric heating from state A to state C (TC = 350 K) followed by isothermal expansion from state C to state B.
- 2^{nd} path: isothermal expansion from state A to state D ($V_D = V_B$) followed by isochoric heating from state D to state B.
- 1. Represent the previous transformations in the Clapeyron diagram (P, V). Arbitrary scale.
- 2. Express then calculate the work W_{ACB} and the quantity of heat Q_{ACB} exchanged by the gas as well as its variation in internal energy ΔU_{ACB} . We give l = p for an ideal gas.
- 3. Express then calculate the work W_{ADB} and the quantity of heat Q_{ADB}

University of Djilali Bounaama of Khemis Miliana Faculty of Science and Technology Department: Physics Second year Bachelor: Physics_(2023/2024)

exchanged by the gas as well as its variation in internal energy ΔU_{ADB} .

4. Compare the quantities W, Q and ΔU . Conclude and comment on your results.

We give the Mayer relation: C_P -- C_V = nR. C_P and C_V are the heat capacities respectively at constant pressure and volume.

Exercise 04 :

An ideal gas is enclosed in a thermally insulated vertical cylinder fitted with a frictionless moving piston. Initially, the gas is in equilibrium and its state is described by the parameters (or variables) V_1 = 12,5 10⁻²m³, P_1 = 2,5 10⁵Pa et T_1 = 300 K. The ratio of gas heat capacities is γ = 7/5. We give R = 8.32 J/mole.K.

- 1. Starting from equilibrium state 1 (initial state), small masses are added one by one until its pressure becomes $P_2 = 7.5 \ 10^5 \ Pa$. As a result of this operation, the gas reaches an equilibrium state 2 described by the parameters V_2 , P_2 , and T_2 .
 - a. What is the nature of the transformation undergone by the gas ? Justify your answer.
 - b. Calculate the volume V_2 , the temperature T_2 , the change in internal energy of the gas, and the work exchanged by the gas (direct calculation of work is not required).
- 2. The gas being in equilibrium in state 2, the cylinder is no longer thermally insulated. The temperature of the external environment is $T_0 = 300$ K. Following this operation, the gas evolves towards a new state of equilibrium 3.
 - c. What is the nature of the transformation undergone by the gas ? Justify your answer.

- d. In the final state we have $P_3 = P_2$. Justify this equality. Determine the temperature T_3 and the volume V_3 .
- e. Calculate the change in internal energy of the gas.

Exercise : 05

In the mountains, we need 5 liters of hot water at 40°C from ice taken on site. The ice temperature is -18°C.

5 kilograms of ice are melted in a kettle on a gas stove.

- 1. Where does the heat that melts the ice come from ?
- 2. What is the name given to the change of state described above?
- 3. Calculate the heat quantity:
- Q1 to raise the ice temperature from 18°C to 0°C;
- Q2 to melt ice at 0°C;
- Q3 to raise the water temperature from o°C to 40°C.

Which of these three steps requires the most heat?

We give:

The specific heats: C_{water} =4180 J/[kg.°C]; C_{glace} =2100 J/[kg.°C]; For latent heat: it takes 335kJ, to melt a kilogram of ice at 0°C.