Département des Sciences de la Matière

Module: Géométrie Différentielle

M1 : Physique Théorique

Calcul Différentiel

1. Rappel sur les normes

Soit E un espace vectoriel sur $(K = \mathbb{R} \text{ ou } \mathbb{C})$. Une application $\| \| : E \to \mathbb{R}$ est appelée une norme si elle vérifie les trois propriétés suivantes :

- $\forall x \in E$: $||x|| = 0 \iff x = 0$.
- $\forall x \in E, \ \forall \lambda \in E : \|\lambda x\| = \lambda \|x\|$ (homogénéité).
- $\forall x, y \in E$, $||x + y|| \le ||x|| + ||y||$ (Inégalité triangulaire).

On dit alors que E est un espace vectoriel normé. On peut définir dans ce cas une distance sur $E \times E$ par d(x,y) = ||x-y||.

Sur K^n définissons pour $x = (x_1, x_2, ..., x_n)$:

$$\begin{aligned} \|x\|_1 &= |x_1| + |x_2| + \dots + |x_n|. \\ \|x\|_2 &= \sqrt{|x_1|^1 + |x_2|^2 + \dots + |x_n|^n}. \\ \|x\|_{\infty} &= \max(|x_1|, |x_2|, \dots, |x_n|). \end{aligned}$$

Alors $||x||_1$, $||x||_2$ et $||x||_{\infty}$ sont trois normes équivalents sur K^n .

Dans toute la suite :

- les espaces \mathbb{R}^n et \mathbb{R}^p sont munis d'une norme $\|.\|$. Comme toutes les normes sont équivalentes en dimension finie, le choix de la norme est sans importance.
- Ω désignera un ouvert de \mathbb{R}^n et $f: \Omega \to \mathbb{R}^p$ une application (fonction).
- $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ est l'espace des applications linéaires de \mathbb{R}^n vers \mathbb{R}^p .

2. Continuité des fonctions sur \mathbb{R}^n

Définition 1. On dit que f est continue en $a \in \Omega$ si :

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$: $\forall x \in \Omega$ tel que $||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \varepsilon$.
Ce qui est équivalent à $\lim_{x \to a} f(x) = f(a)$. On dit que f est continue sur Ω si f est continue en tout point de Ω .

Proposition 1. Toutes les applications linéaires de \mathbb{R}^n vers \mathbb{R}^p sont continues.

3. Différentiabilité – Différentielle.

Définition 2. On dit que f est différentiable (ou dérivable) en $a \in \Omega$ s'il existe $L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ tel que pour tout $h \in \mathbb{R}^n$ telle que $a + h \in \Omega$ on ait :

$$f(a+h) = f(a) + L(h) + \varepsilon(h) \|h\| \tag{1}$$

avec $\lim_{h\to 0_{\mathbb{R}^p}} \varepsilon(h) = 0_{\mathbb{R}^p}$, où d'une façon équivalente :

$$\lim_{h\to 0_{\mathbb{R}^n}}\frac{1}{\|h\|}\big(f(a+h)-f(a)-L(h)\big)=0_{\mathbb{R}^p}.$$

Notation:

• Si on pose $\varepsilon(h) || h || = o(h)$, l'équation (1) s'écrit : f(a+h) = f(a) + L(h) + o(h) (2)

avec $\lim_{h\to 0_{\mathbb{R}^n}}\frac{o(h)}{\|h\|}=0_{\mathbb{R}^p}.$

- Si on pose x = a + h la formule (1) s'écrit : f(x) = f(a) + L(x a) + o(x a)(3)
- L'application L est appelée différentielle de f en a (ou la dérivée de f en a) et sera notée par Df(a), df(a) ou Df_a .

Proposition 2. Si f est différentiable en a alors Df(a) (la différentielle de f en a) est **unique** et f est **continue** en a.

Remarque 1. L'application f peut être continue en a mais pas différentiable en a.

Définition 3.

1. On dit que f est différentiable sur Ω si f est différentiable en tout $x \in \Omega$. On appelle alors la différentielle de f l'application :

$$Df: \Omega \longrightarrow \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$$

 $x \mapsto Df(x).$

2. Si f est différentiable sur Ω et l'application Df est continue on dit que f est de classe C^1 sur Ω .

Règles de dérivation :

- 1) Si f est une fonction constante, f est différentiable et Df(a) = 0, $\forall a \in \mathbb{R}^n$.
- 2) Si f = L une application linéaire alors DL(a) = L, $\forall a \in \mathbb{R}^n$.
- 3) La dérivée d'une fonction affine f(x) = Lx + c est Df(a) = L.
- 4) Si f, $g: \Omega \to \mathbb{R}^p$ sont différentiable en a alors f + g et kf, où k est une constante, sont aussi différentiable en a et on a :

$$D(f+g)(a) = Df(a) + Dg(a)$$
, et $D(kf)(a) = kDf(a)$.

5) Si $f: \Omega \to \mathbb{R}^p$ est donnée par ses applications composantes $f = (f_1, f_2, ..., f_p)$ est différentiable en a si et seulement si f_i , i = 1, ..., p est différentiable en a et on a :

$$Df(a) = \Big(Df_1(a), Df_2(a), \dots, Df_p(a) \Big).$$

Théorème 1. (Théorème de dérivation des fonctions composées)

Soit $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^p$ et $g: V \subset \mathbb{R}^p \to \mathbb{R}^m$ deux applications tels que $f(\Omega) \subset V$. Si f est différentiable en $a \in \mathbb{R}^n$ et g est différentiable en $f(a) \in \mathbb{R}^p$ alors $g \circ f$ est différentiable en $a \in \mathbb{R}^n$ et on a : $D(g \circ f)(a) = Dg(f(a)) \circ Df(a)$.

4. Dérivée directionnelle et dérivées partielles

Définition 4. On dit que f admet une drivée directionnelle en a suivant le vecteur v (ou dans la direction v) si et seulement si $\lim_{t\to 0} \frac{f(a+tv)-f(a)}{t}$ existe et elle notée par $d_v f(a)$ ou $f_v'(a)$.

Exemple 1. Soient $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = 5x^2y$, v = (1,2), a = (0,0).

$$f_{v}'(a) = f_{v}'(0,0) = \lim_{t \to 0} \frac{f(a+tv)-f(a)}{t} = \lim_{t \to 0} \frac{f((0,0)+t(1,2))-f(0,0)}{t}$$
$$= \lim_{t \to 0} \frac{f(t,2t)-f(0,0)}{t} = \lim_{t \to 0} \frac{10t^{3}}{t} = 0.$$

Proposition 3. Si l'application f est différentielle en a alors f est dérivable en a dans n'importe quelle direction v et on a $f_v'(a) = Df_v(a)$.

Remarque 2. La réciproque est fausse. Une fonction peut être dérivable en un point dans toutes les directions sans être différentiable.

Exemple 2. Soient $f: \mathbb{R}^2 \to \mathbb{R}$, définie par $f(x,y) = \frac{y^2}{x}$ si $x \neq 0$ et f(0,y) = 0,

 $v = (v_1, v_2)$ et a = (0,0). Montrer que f est dérivable en (0,0) dans toutes les directions mais qu'elle n'est pas différentielle en (0,0).

Solution. I) On a: 1) Si $v_1 \neq 0$ on a:

$$f_v'(0,0) = Df_v(0,0) = \lim_{t\to 0} \frac{f((0,0)+t(v_1,v_2))-f(0,0)}{t} = \lim_{t\to 0} \frac{\frac{(tv_2)^2}{tv_1}-0}{t} = \frac{v_2^2}{v_1}$$

2) Si
$$v_1 = 0$$
, $f_v'(0,0) = Df_v(0,0) = \lim_{t \to 0} \frac{f((0,0) + t(0,v_2)) - f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0$.

Donc f est dérivable en (0,0) dans n'importe qu'elle direction.

II) Si f est différentielle en (0,0) alors f est continue en (0,0), c'est-à-dire :

$$\lim_{(x,y)\to(0,0)}|f(x,y)-f(0,0)|=\lim_{(x,y)\to(0,0)}|f(x,y)-0|=\lim_{(x,y)\to(0,0)}|f(x,y)|=0.$$

Mais $\lim_{(x,y)\to(0,0)} f(x,y)$ n'existe pas, car si on prend $x=y^2$, $f(y^2,y)=\frac{y^2}{y^2}=1$ tend vers 1 si $y\to 0$ et si prend x=y, $f(x,x)=\frac{x^2}{x}=x$ tend vers 0 si $x\to 0$. Donc f n'est pas continue en (0,0) et par la suite f n'est pas différentielle en (0,0).

Définition 5. Si $(e_1, e_2, ..., e_n)$ désigne la base canonique de \mathbb{R}^n et si f admet une dérivée directionnelle dans la direction e_i on dira que f admet une dérivée partielle par rapport à la i-ème variable en a et on la notera :

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a_1, \dots, a_i + t, \dots, a_n) - f(a_1, \dots, a_i, \dots, a_n)}{t}.$$

Remarque 2.

- L'existence des dérivées partielles n'implique pas la continuité.
- L'existence des dérivées partielles n'implique pas la différentiabilité.
- Le calcul pratique de la dérivée partielle par rapport à x_i s'obtient en dérivant la formule de f par rapport à x_i , et en considérant tous les x_j , $j \neq i$ comme des constantes.

Exemple 3. Soit
$$f(x,y) = x^y$$
 alors $\frac{\partial f}{\partial x}(x,y) = yx^{y-1}$ et $\frac{\partial f}{\partial y}(x,y) = x^y \log x$.

Exemple 4. Considérons la fonction f définie par :

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

La fonction f n'est pas continue en (0,0) car $\lim_{(x,y)\to(0,0)} f(x,y)$ n'existe pas:

$$\lim_{x \to 0} f(x, x) = \frac{1}{2} \neq \lim_{x \to 0} f(x, 0) = 0.$$

Par la suite f n'est pas différentiable en ce point. Par contre elle admet des dérivées partielles en ce point car :

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0 \text{ et } \frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0.$$

Proposition 4. Si f est différentiable en a alors elle admet des dérivées partielles en ce point et :

$$Df(a)(h) = \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(a)$$
 avec $h = (h_1, h_2, ..., h_n)$.

Remarque 3. Si f est différentiable alors les dérivées partielles existent mais la réciproque n'est pas toujours vraie.

Théorème 2.Une application $f: \Omega \to \mathbb{R}^p$ est de classe sur Ω si et seulement si toutes les dérivées partielles existent et sont continues sur Ω .

Exemple 5. Soit la fonction f définie par :

$$f(x,y) = \begin{cases} \frac{xy^3}{x^4 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

La fonction f est de classe C^1 sur $\mathbb{R}^2 - \{(0,0)\}$.

De plus elle est continue en (0,0) car $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0$. En effet, on a :

$$0 \le |f(x,y)| = \left| \frac{xy^3}{x^4 + y^2} \right| \le \left| \frac{xy^3}{y^2} \right| = |xy| \to 0 \text{ quand } (x,y) \to (0,0).$$

Ce qui implique que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Les dérivées partielles existent en (0,0) :

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0 \text{ et } \frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0.$$

De plus si $(x, y) \neq (0,0)$, on a : $\frac{\partial f}{\partial x}(x, y) = \frac{-3x^4y^5 + y^5}{(x^4 + y^2)^2}$ et $\frac{\partial f}{\partial y}(x, y) = \frac{3x^5y^2 + xy^4}{(x^4 + y^2)^2}$ qui sont continue sur $\mathbb{R}^2 - \{(0,0)\}$ et en (0,0). On a :

$$0 \le \left| \frac{\partial f}{\partial x}(x, y) \right| = \left| \frac{-3x^4y^5 + y^5}{(x^4 + y^2)^2} \right| \le \frac{3|y|^5x^4}{(x^4 + y^2)^2} + \frac{|y|^5}{(x^4 + y^2)^2} \le \frac{3|y|^5x^4}{(2x^2y)^2} + \frac{|y|^5}{y^4} \le \frac{3}{4}|y| + |y| \to 0$$

quand $(x,y) \to (0,0)$, c'est-à-dire $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial x}(0,0) = 0$. De la même manière on a :

$$0 \le \left| \frac{\partial f}{\partial y}(x, y) \right| = \left| \frac{3x^5y^2 + xy^4}{(x^4 + y^2)^2} \right| \le \frac{3|x|^5y^2}{(x^4 + y^2)^2} + \frac{|x|y^4}{(x^4 + y^2)^2} \le \frac{3|x|^5y^2}{(2x^2y)^2} + \frac{|x|y^4}{y^4} \le \frac{3}{4}|x| + |x| \to 0$$

quand $(x,y) \to (0,0)$, c'est-à-dire $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial y}(x,y) = \frac{\partial f}{\partial y}(0,0) = 0$. Alors f est de classe C^1 sur \mathbb{R}^2 .

5. Matrice Jacobienne

Si f est différentiable au point a. On appelle la matrice jacobienne de f au point a, notée $J_f(a)$ la matrice de Df(a) dans les bases canoniques de \mathbb{R}^n et \mathbb{R}^p . Si $f = (f_1, f_2, ..., f_p)$ avec $f_i \colon \Omega \to \mathbb{R}^p$ et $h = (h_1, h_2, ..., h_n)$, on a alors :

$$Df(a)(h) = \left(\sum_{i=1}^{n} h_i \frac{\partial f_1}{\partial x_i}(a), \dots, \sum_{i=1}^{n} h_i \frac{\partial f_p}{\partial x_i}(a)\right).$$

La matrice jacobienne $J_f(a)$ est la matrice $p \times n$:

$$J_f(\mathbf{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_p}{\partial x_1}(a) & \cdots & \frac{\partial f_p}{\partial x_n}(a) \end{bmatrix}.$$

Si n = p la jacobienne est une matrice carrée, dans ce cas on peut considérer son déterminant appelé le jacobien de f.

Exemple 6.

- 1. Si $f: \mathbb{R} \to \mathbb{R}$ est dérivable, la matrice jacobienne se réduit à une matrice d'ordre 1, que l'on peut identifier à la dérivée f'(a).
- 2. Si $f: \mathbb{R}^n \to \mathbb{R}$ et f est dérivable en a la jacobienne est la transposée d'un vecteur colonne appelé le gradient de f noté

$$\nabla f \ i. \ e.: \quad J_f(a) = \nabla f(a)^T = (\frac{\partial f}{\partial x_1}(a), ..., \frac{\partial f}{\partial x_n}(a)).$$

3. Si $f: \mathbb{R}^2 \to \mathbb{R}$ avec $f(x, y) = x^4 + xy^2$ alors

$$J_f(x,y) = \nabla f(x,y) = (4x^3 + y^2, 2xy)$$

et $Df(x,y): \mathbb{R}^2 \to \mathbb{R}$

$$(h,k) \mapsto Df(x,y)(h,k) = (4x^3 + y^2)h + (2xy)k.$$

4. Si $f: \mathbb{R}^2 \to \mathbb{R}^2$ avec $f(x, y) = (xy, \sin xy)$, alors

$$J_f(x,y) = \begin{bmatrix} y & x \\ y\cos(xy) & x\cos(xy) \end{bmatrix} \text{ et } \det J_f(x,y) = |J_f(x,y)| = 0.$$

De plus : Df(x,y): $\mathbb{R}^2 \to \mathbb{R}^2$

$$Df(x,y)(h,k) = (yh + xk, y\cos(xy)h + x\cos(xy)k)$$
$$= (yh + xk)(1,\cos xy).$$

6. Différentiation d'ordres supérieurs Définition 6.

- On dira que f est de classe C^2 sur Ω si l'application f est de classe C^1 et Df est de classe C^1 sur Ω .
- On dit que f admet des dérivées partielles d'ordre 2 si les dérives partielles $\frac{\partial f}{\partial x_i}$ admettent elles-mêmes des dérivées partielles selon toutes les variables :

$$\frac{\partial^2 f}{\partial x_j \partial x_i} := \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) \qquad i = 1, \dots, n \; ; \quad j = 1, \dots, n.$$

Proposition 5. L'application f est de classe C^2 sur Ω si elle vérifie les deux conditions suivantes :

- elle admet des dérivées partielles d'ordre 2 ;
- toutes ses dérivées partielles sont des applications continues sur Ω .

Lorsque f est de classe C^2 sur Ω , pour tout point α l'application :

$$D^2f(a): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^p$$
 avec $D^2f(a)(h,k) = \sum_{1 \le i,j \le n} h_i k_j \frac{\partial^2 f}{\partial x_j \partial x_i}(a)$, $h = (h_1,h_2,\ldots,h_n)$ et $k = (k_1,k_2,\ldots,k_n)$ est bilinéaire. On l'appelle la différentielle seconde de f au point a .

Exemple 7. Considérons la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par :

 $f(x,y) = x^4 + y^4 - 4xy$. Les dérivées partielles d'ordre 1 sont :

$$\frac{\partial f}{\partial x}(x,y) = 4x^3 - 4y, \qquad \frac{\partial f}{\partial y}(x,y) = 4y^3 - 4x.$$

Les dérivées partielles secondes au point (1,1) sont :

$$\frac{\partial^2 f}{\partial x \partial x}(1,1) = \frac{\partial^2 f}{\partial y \partial y}(1,1) = 12, \quad \frac{\partial^2 f}{\partial x \partial y}(1,1) = \frac{\partial^2 f}{\partial y \partial x}(1,1) = -4. \quad \text{Donc pour des vecteurs}:$$

 $h = (h_1, h_2)$ et $k = (k_1, k_2)$ on a:

$$D^2 f(1,1)(h,k) = 12h_1k_1 + 12h_2k_2 - 4h_1k_2 - 4h_2k_1.$$

Théorème 3. (Théorème de Schwarz) Soit $\Omega \subset \mathbb{R}^n$ un ouvert et soit $f: \Omega \to \mathbb{R}$ une fonction.

On suppose que les dérivées partielles $\frac{\partial^2 f}{\partial x_i \partial x_j}$ et $\frac{\partial^2 f}{\partial x_i \partial x_i}$ existent et elles sont continues. Alors :

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

Lorsque f est à valeurs dans \mathbb{R} , sa différentielle seconde au point a est une application bilinéaire. La matrice de cette forme bilinéaire dans la base canonique est la matrice carrée contenant les dérivées partielles d'ordre 2 ; elle est appelée hessienne de f au point a:

$$H_f(a) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(a) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(a) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(a) \end{bmatrix}.$$

Soit $k \ge 1$, de la même manière on définit les dérivées partielles d'ordre k de f qui sont les dérivées partielles d'ordre k-1 des fonctions $\frac{\partial f}{\partial x_i}$, $i=1,\ldots,n$.

Proposition 6. Soit $k \ge 1$. Une fonction $f: \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ est de classe C^k sur Ω si :

- 1. f est de classe C^1 sur Ω .
- 2. Les dérivées partielles $\frac{\partial f}{\partial x_i}$, $i=1,\ldots,n$ sont de classe C^{k-1} sur Ω .

Définition 7. Soit $k \ge 1$. Une application $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ est dite de classe C^k si toutes ses composantes sont de classe C^k .

Définition 8. La fonction f est de classe C^{∞} si elle est de classe C^k pour tout entier k > 0.

Définition 9.

- f est un homéomorphisme si f est bijective et f et f^{-1} sont continues.
- f est un difféomorphisme (C^1 difféomorphisme) si f est bijective et f et f^{-1} sont de classe C^1 .
- f est un C^k difféomorphisme $(k \ge 1)$ si f est bijective et f et f^{-1} sont de classe C^k .

Remarque 4. Si f est un difféomorphisme alors f est un homéomorphisme mais la réciproque est fausse.

Exemple 8. Soit $f: \mathbb{R} \to \mathbb{R}$ avec $f(x) = x^3$. La foction f est bijective et de classe mais son inverse

 f^{-1} : $\mathbb{R} \to \mathbb{R}$ avec $f^{-1}(x) = \sqrt[3]{x}$ n'est pas différentiable en 0. L'application f est donc un homéomorphisme mais pas un difféomorphisme.

References : polycope de Metz (calcul diff sur Rn unv. De Metz)

Cours de chelef