Djilali BOUNAAMA University of Khemis Miliana Faculty of Sciences and Technology Department of Material Sciences/Technology

Exercise Series N°2

Exercise 1:

Consider two moles of oxygen dioxide, a gas assumed to be ideal, which can be reversibly transitioned from the initial state A (P_A , V_A , T_A) to the final state B ($P_B = 3 P_A$, V_B , $T_B = T_A$) via two distinct paths: Path 1: Isothermal transformation.

Path 2: Transformation composed of an isochoric followed by an isobaric transformation.

1. Represent both paths on a Clapeyron diagram.

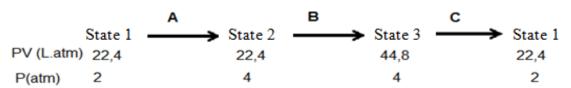
2. Calculate, in each case, the work involved as a function of T_A .

<u>Data:</u> $T_A = 300 \text{ K}.$

Exercise 2:

I. Calculate the quantity of heat required to raise the temperature of the air in a room from 0°C to 1°C. **Data:** $\rho_{air} = 1.30$ g/L; dimensions of the room: 5m x 4m x 2.5m, $c_{air} = 820$ J/kg.K.

II. Calculate the internal energy change for each of the following systems:


1. A system absorbs Q = 2 kJ while providing external work W = 500 J.

2. A gas maintained at constant volume releases Q = 5 kJ.

3. Adiabatic compression of a gas is accomplished with work W = 80 J.

Exercise 3:

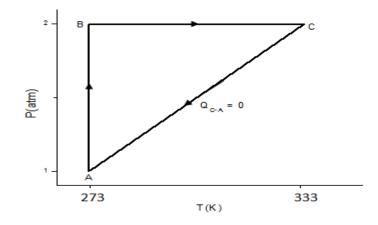
One mole of a monatomic ideal gas undergoes the following reversible transformations successively :

- 1. Give the nature of each transformation.
- 2. Calculate the work for each transformation.
- 3. Calculate the internal energy change during transformation C.
- 4. Deduce, without calculation, the internal energy change during transformation B.

Data: $\gamma = 5/3$

Exercise 4:

A mole of an ideal gas undergoes the following reversible transformations:


- Transformation A-B such that $\Delta H_{A-B} = Q_{A-B}$ and $Q_{A-B} = 1050$ cal.
- Transformation B-C such that P.V=constant.
- Transformation C-A such that $T.V^{(\gamma-1)}$ =constant.
- 1. Provide the nature of each transformation.
- 2. Determine the missing parameters for each transformation.
- 3. Represent the cycle on the Clapeyron diagram (P, V).

4. Calculate in calories, for each transformation and for the cycle: the work (W), the quantity of heat exchanged (Q), and the enthalpy change (Δ H).

<u>Data:</u> $c_p=7$ cal/mol.K, $c_v=5$ cal/mol.K, $T_A=300$ K, $P_A=1$ atm, R=0.082 atm.L/mol.K=2 cal/mol.K, 1 atm.L=101.3 J, 1 cal=4.18 J.

Exercise 5:

One mole of gas assumed to be ideal undergoes the reversible cycle of transformations represented below in coordinates (P, T):

1. Identify the nature of each transformation.

2. Evaluate the variables P, V, T for each of the states A, B, C.

3. Calculate, for each transformation and for the cycle: the work W, the quantity of heat Q, the internal energy change ΔU , and the enthalpy change ΔH .

Data: R=8.31 J/mol.K, cp=29.12 J/mol.K, cv=20.8 J/mol.K

Exercise 6:

Calculate the enthalpy change when one mole of iodine changes from 300K to 500K under a pressure of 1atm. The molar specific heats of pure substances are given as follows:

 $\begin{array}{l} c_p \left(I_2, \, solid \right) = 5.4 \ cal/mol.K \\ c_p \left(I_2, \, liquid \right) = 19.5 \ cal/mol.K \end{array}$

 c_p (I₂, gas) = 9.0 cal/mol.K

The molar enthalpies of phase changes (latent heats) are:

 ΔH° vaporization at 457K = 6.10 kcal/mol

 ΔH° fusion at 387K = 3.74 kcal/mol