KHEMIS MILIANA University

Faculty of Science and Technology Department of Science of Matter - L1 ST-SM Exercise Series of GW of Physics 1, 2023-2024 Exercise Series Number 1. Part I. Vector Analysis

In the following all vectors are related to the rectangular coordinate system $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}).$

Exercise 1:

Explain how to distinguish a scalar from a vector quantity. Give examples for each one.

*Exercise 2:

- Let \overrightarrow{A} be a vector specified by $\overrightarrow{A} = \overrightarrow{i} + 2\overrightarrow{j} 2\overrightarrow{k}$.
- 1. (a) Determine the components of \vec{A} .
 - (b) Determine its algebraic measures.
 - (c) Calculate its magnitude.
 - (d) Calculate its cosine directors.
 - (e) Represent the vector \overrightarrow{A} in the rectangular coordinates system.

2. Answer same questions for the vector \overrightarrow{B} given by $\overrightarrow{B} = 2\overrightarrow{i} - \overrightarrow{j} + \frac{\overrightarrow{i} - 5\overrightarrow{j} + \overrightarrow{k}}{3}$.

Exercise 3:

Given vector $\overrightarrow{R} = 3\overrightarrow{i} + 3\overrightarrow{j} - 3\overrightarrow{k}$.

- 1. Find the unit vector \overrightarrow{U}_R of the vector \overrightarrow{R} .
- 2. Verify that the magnitude of \overrightarrow{U}_R equals to unity.
- 3. Represent the vectors \overrightarrow{R} and \overrightarrow{U}_R in the rectangular coordinate system.

Exercise 4:

Let A and B be two points specified in the rectangular system, by their coordinates A(4, 2, 1) and $\hat{B}(-2, 3, 2)$.

- 1. What are the components of the vector \overrightarrow{AB} .
- 2. Calculate its magnitude.
- 3. Determine the angles it makes with the axes of the rectangular coordinate system.

*Exercise 5:

Given two vectors $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j}$ and $\overrightarrow{v} = \overrightarrow{j} + \overrightarrow{k}$:

- 1. Calculate the dot product of the two vectors. Determine the angle θ between the two vectors.
- 2. Calculate the cross product of the two vectors. Determine the angle ϕ between the two vectors.
- 3. Determine the area of the parallelogram with sides \vec{u} and \vec{v} .

*Exercise 6:

Given vectors
$$\overrightarrow{A} = \overrightarrow{i} + 3\overrightarrow{j} - 2\overrightarrow{k}$$
 and $\overrightarrow{B} = 2\overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k}$.

1. Calculate \overrightarrow{S} the sum of the two vectors.

2. Calculate the vector $\overrightarrow{D} = \overrightarrow{A} - \overrightarrow{B}$.

- · 3. Calculate the magnitude of the two vectors.
- 4. Calculate the dot product of the two vectors.
- 5. Calculate the cross product of the two vectors. Precise its magnitude and direction.
- 6. Determine the angle between the two vectors.
- 7. represent, in a rectangular coordinate system, $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, the vectors $\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{S}, \overrightarrow{D} \text{ and } \overrightarrow{A} \times \overrightarrow{B}.$

Exercise 7:

Show that if the \vec{u} is a unit vector depending on a scalar parameter t, the equality $\frac{d\vec{u}}{dt} \bullet \vec{u} = 0$ is correct, i.e., $\frac{d\vec{u}}{dt}$ is perpendicular to \vec{u} .

*Exercise 8:

Given vectors $\overrightarrow{A} = m \overrightarrow{i} + 3 \overrightarrow{j} + 4 \overrightarrow{k}$ and $\overrightarrow{B} = 4 \overrightarrow{i} + m \overrightarrow{j} - 7 \overrightarrow{k}$. Find the value of m for which the two vectors are perpendicular to each other.

Exercise 9:

Calculate the area specified by the points with coordinates A(1, 1, 2), B(1, 3, 1)et C(2, 1, 3).

Exercise 10:

Calculate the area of the parallelogram of sides $\overrightarrow{A} = 6 \overrightarrow{i} + 3 \overrightarrow{j} - 2 \overrightarrow{k}$ and $\overrightarrow{B} = 3 \overrightarrow{i} - 2 \overrightarrow{j} + 6 \overrightarrow{k}$.

Exercise 11:

Let ABCD be a parallelogram. Notice E the midpoint of the segment [AB] and F a point such that $\overrightarrow{EF} = \overrightarrow{DE}$. Show that $\overrightarrow{FB} = \overrightarrow{BC}$

*Exercise 12:

Show that the angles α , β and γ as well as the sides a, b and c of any triangle, are related by the sine law, which is given by:

 $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$

where a is the side opposite angle α , b is the side opposite angle β and c is the side opposite to the angle γ .

*Exercise 13:

Given the vector field $\overrightarrow{v} = (3t^2 - 2t)\overrightarrow{i} + 4t^2\overrightarrow{j} - 5t\overrightarrow{k}$.

1. Calculate $\frac{d \vec{v}}{dt}$ 2. Calculate $\int \vec{v}(t) dt$

Exercise 14:

Given the vector field $\overrightarrow{A} = 3x^2y\overrightarrow{i} + yz^2\overrightarrow{j} - xz\overrightarrow{k}$ and the scalar function $\phi(x, y, z) = x^2 y z.$

- 1. Calculate the gradient $\overrightarrow{\nabla}\phi(x, y, z)$
- 2. Calculate the divergence $\overrightarrow{\nabla} \bullet \overrightarrow{A}$
- 3. Calculate the curl $\overrightarrow{\nabla} \times \overrightarrow{A}$
- 4. Calculate the curl of the gradient $\overrightarrow{\nabla} \times \left(\overrightarrow{\nabla} \phi(x, y, z)\right)$
- 5. Calculate the divergence of the curl $\overrightarrow{\nabla} \bullet \left(\overrightarrow{\nabla} \times \overrightarrow{A}\right)$

Solved Exercise [1]:

If $\overrightarrow{A} = 3x^2y \overrightarrow{i} + yz^2 \overrightarrow{j} - xz \overrightarrow{k}$ and $\phi(x, y, z) = x^2yz$, find $\frac{\partial^2(\phi \overrightarrow{A})}{\partial u \partial z}$ at the point M(1, -2, -1)

Solution:

$$\begin{split} \phi \overrightarrow{A} &= (x^2 y z) \left(3x^2 y \overrightarrow{i} + y z^2 \overrightarrow{j} - x z \overrightarrow{k} \right) = 3x^4 y^2 z \overrightarrow{i} + x^2 y^2 z^3 \overrightarrow{j} - x^3 y z^2 \overrightarrow{k} \\ \frac{\partial}{\partial z} \left(\phi \overrightarrow{A} \right) &= \frac{\partial}{\partial z} \left(3x^4 y^2 z \overrightarrow{i} + x^2 y^2 z^3 \overrightarrow{j} - x^3 y z^2 \overrightarrow{k} \right) = 3x^4 y^2 \overrightarrow{i} + 3x^2 y^2 z^2 \overrightarrow{j} - 2x^3 y z \overrightarrow{k} \\ \frac{\partial^2 \left(\phi \overrightarrow{A} \right)}{\partial y \partial z} &= \frac{\partial}{\partial y} \left(3x^4 y^2 \overrightarrow{i} + 3x^2 y^2 z^2 \overrightarrow{j} - 2x^3 y z \overrightarrow{k} \right) = 6x^4 y \overrightarrow{i} + 6x^2 y z^2 \overrightarrow{j} - 2x^3 z \overrightarrow{k} \\ \text{If, for } M, x = 1, y = -2 \text{ et } z = -1, \text{ this becomes } -12 \overrightarrow{i} - 12 \overrightarrow{j} + 2 \overrightarrow{k} \end{split}$$

References

[1] Spiegel, Murray R. Theoretical Mechanics. McGraw-Hill, 1972